On wave propagation in inhomogeneous systems

被引:34
作者
Modinos, A
Stefanou, N
Psarobas, IE
Yannopapas, V
机构
[1] Univ Athens, Sect Solid State Phys, GR-15784 Athens, Greece
[2] Natl Tech Univ Athens, Dept Phys, GR-15773 Athens, Greece
来源
PHYSICA B | 2001年 / 296卷 / 1-3期
关键词
wave propagation; inhomogeneous systems; multiple scattering; photonic crystals; phononic crystals;
D O I
10.1016/S0921-4526(00)00795-X
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We present a theory of electron, electromagnetic, and elastic wave propagation in systems consisting of nonoverlapping scatterers in a host medium. The theory provides a framework for a unified description of wave propagation in three-dimensional periodic structures, finite slabs of layered structures, and systems with impurities: isolated impurities. impurity aggregates, or randomly distributed impurities. We point out the similarities and differences between the different cases considered, and discuss the numerical implementation of the formalism. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:167 / 173
页数:7
相关论文
共 38 条
[1]  
[Anonymous], 1996, Photonic band gap materials
[2]   DIFFRACTION OF LOW-ENERGY ELECTRONS BY CRYSTALS [J].
BEEBY, JL .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1968, 1 (01) :82-&
[3]  
Bohm A., 1993, QUANTUM MECH FDN APP
[4]  
Bohren C. F., 1998, ABSORPTION SCATTERIN
[5]   RESONANCE THEORY OF ELASTIC-WAVES ULTRASONICALLY SCATTERED FROM AN ELASTIC SPHERE [J].
BRILL, D ;
GAUNAURD, GC .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1987, 81 (01) :1-21
[6]  
Chew W. C., 1995, WAVES FIELDS INHOMOG
[7]  
Dederichs P. H., 1989, ALLOY PHASE STABILIT, P377
[8]  
Gonis A, 1992, GREEN FUNCTIONS ORDE
[9]   ENERGY BANDS IN PERIODIC LATTICES - GREENS FUNCTION METHOD [J].
HAM, FS ;
SEGALL, B .
PHYSICAL REVIEW, 1961, 124 (06) :1786-&
[10]  
Joannopoulos J. D., 1995, PHOTONIC CRYSTALS