Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes

被引:182
作者
Fukuda, Atsunori [1 ]
Nakamura, Atsuko
Hara, Naho [1 ]
Toki, Seiichi [1 ]
Tanaka, Yoshiyuki [1 ]
机构
[1] Natl Inst Agrobiol Sci, Div Plant Sci, Tsukuba, Ibaraki 3058602, Japan
关键词
Gene expression; Na+/H+ antiporter gene; Oryza; Salt tolerance; SALT TOLERANCE; ION HOMEOSTASIS; EXCHANGER GENE; WATER-STRESS; H+-ATPASE; EXPRESSION; ARABIDOPSIS; YEAST; PLANTS; SOS1;
D O I
10.1007/s00425-010-1289-4
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We previously cloned a vacuolar Na+/H+ antiporter gene (OsNHX1) from rice (Oryza sativa). Here we identified four additional NHX-type antiporter genes in rice (OsNHX2 through OsNHX5) and performed molecular and functional analyses of those genes. The exon-intron structure of the OsNHX genes and the phylogenetic tree of the OsNHX proteins suggest that the OsNHX proteins are categorized into two subgroups (OsNHX1 through OsNHX4 and OsNHX5). OsNHX1, OsNHX2, OsNHX3, and OsNHX5 can suppress the Na+, Li+, and hygromycin sensitivity of yeast nhx1 mutants and their sensitivity to a high K+ concentration. The expression of OsNHX1, OsNHX2, OsNHX3, and OsNHX5 is regulated differently in rice tissues and is increased by salt stress, hyperosmotic stress, and ABA. When we studied the expression of beta-glucuronidase (GUS) driven by either the OsNHX1 or the OsNHX5 promoter, we observed activity in the stele, the emerging part of lateral roots, the vascular bundle, the water pore, and the basal part of seedling shoots with both promoters. In addition, each promoter had a unique expression pattern. OsNHX1 promoter-GUS activity only was localized to the guard cells and trichome, whereas OsNHX5 promoter-GUS activity only was localized to the root tip and pollen grains. Our results suggest that the members of this gene family play important roles in the compartmentalization into vacuoles of the Na+ and K+ that accumulate in the cytoplasm and that the differential regulation of antiporter gene expression in different rice tissues may be an important factor determining salt tolerance in rice.
引用
收藏
页码:175 / 188
页数:14
相关论文
共 45 条
[1]   Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant [J].
Aida, M ;
Ishida, T ;
Fukaki, H ;
Fujisawa, H ;
Tasaka, M .
PLANT CELL, 1997, 9 (06) :841-857
[2]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[3]   Inventory of the superfamily of P-type ion pumps in Arabidopsis [J].
Axelsen, KB ;
Palmgren, MG .
PLANT PHYSIOLOGY, 2001, 126 (02) :696-706
[4]   The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae [J].
Bowers, K ;
Levi, BP ;
Patel, FI ;
Stevens, TH .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (12) :4277-4294
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   A POINT MUTATION OF THE NA+/H+ EXCHANGER GENE (NHE1) AND AMPLIFICATION OF THE MUTATED ALLELE CONFER AMILORIDE RESISTANCE UPON CHRONIC ACIDOSIS [J].
COUNILLON, L ;
FRANCHI, A ;
POUYSSEGUR, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (10) :4508-4512
[7]   Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice [J].
Fukuda, A ;
Nakamura, A ;
Tagiri, A ;
Tanaka, H ;
Miyao, A ;
Hirochika, H ;
Tanaka, Y .
PLANT AND CELL PHYSIOLOGY, 2004, 45 (02) :146-159
[8]   Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa [J].
Fukuda, A ;
Nakamura, A ;
Tanaka, Y .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 1999, 1446 (1-2) :149-155
[9]   Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley [J].
Fukuda, A ;
Chiba, K ;
Maeda, M ;
Nakamura, A ;
Maeshima, M ;
Tanaka, Y .
JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (397) :585-594
[10]   Agrobacterium-mediated transformation of monocot and dicot plants using the NCR promoter derived from soybean chlorotic mottle virus [J].
Fukuoka, H ;
Ogawa, T ;
Mitsuhara, I ;
Iwai, T ;
Isuzugawa, K ;
Nishizawa, Y ;
Gotoh, Y ;
Nishizawa, Y ;
Tagiri, A ;
Ugaki, M ;
Ohshima, M ;
Yano, H ;
Murai, N ;
Niwa, Y ;
Hibi, T ;
Ohashi, Y .
PLANT CELL REPORTS, 2000, 19 (08) :815-820