Periodic orbits arising from Delta-modulated feedback control

被引:10
作者
Xia, XH [1 ]
Gai, RD
Chen, GR
机构
[1] Univ Pretoria, Dept Elect Elect & Comp Engn, ZA-0002 Pretoria, South Africa
[2] Liaoning Tech Univ, Dept Basic Sci, Fuxin 123000, Peoples R China
[3] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
基金
新加坡国家研究基金会;
关键词
D O I
10.1016/S0960-0779(03)00131-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Delta-modulated feedback gives rise to a system of the form x(+) = f(x) - ax - Deltasgn(ax). In this paper, we will determine the a values, 1 < \a\ < 2, for which periodic orbits of each order exist. Polynomials with "sign" coefficients are introduced, and their properties are investigated. With the help of the roots of these polynomials, we characterize the minimal value for \a\ such that a periodic point of a certain order first appears. Our results show that even though the topological properties of the tent map and the map f are different, the mechanisms of giving rise to periodic orbits via parameter variations are exactly the same for -2 < a < - 1, and only "slightly" different for 1 < a < 2. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:581 / 595
页数:15
相关论文
共 16 条
[1]   SIMULATION OF CDMA SYSTEM PERFORMANCE WITH FEEDBACK POWER-CONTROL [J].
ARIYAVISITAKUL, S ;
CHANG, LF .
ELECTRONICS LETTERS, 1991, 27 (23) :2127-2128
[2]   Quantized feedback stabilization of linear systems [J].
Brockett, RW ;
Liberzon, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (07) :1279-1289
[3]   STABILIZING A LINEAR-SYSTEM WITH QUANTIZED STATE FEEDBACK [J].
DELCHAMPS, DF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (08) :916-924
[4]  
DERRIDA B, 1978, ANN I H POINCARE A, V29, P305
[5]   Stabilization of linear systems with limited information [J].
Elia, N ;
Mitter, SK .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (09) :1384-1400
[6]  
GAI R, COMPLEX DYNAMICS SYS
[7]   THE EXISTENCE OF PERIODIC-ORBITS OF THE TENT MAP [J].
HEIDEL, J .
PHYSICS LETTERS A, 1990, 143 (4-5) :195-201
[8]   Stabilization of exponentially unstable linear systems with saturating actuators [J].
Hu, TS ;
Lin, ZL ;
Qiu, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (06) :973-979
[9]  
Hua LK, 2012, Applications of number theory to numerical analysis
[10]   Characterization of well-posedness of piecewise-linear systems [J].
Imura, J ;
van der Schaft, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (09) :1600-1619