Efficient optical reservoir computing for parallel data processing

被引:18
作者
Bu, Ting [1 ,2 ]
Zhang, He [1 ,2 ]
Kumar, Santosh [1 ,2 ]
Jin, Mingwei [1 ,2 ]
Kumar, Prajnesh [1 ,2 ]
Huang, Yuping [1 ,2 ,3 ]
机构
[1] Stevens Inst Technol, Dept Phys, Hoboken, NJ 07030 USA
[2] Stevens Inst Technol, Ctr Quantum Sci & Engn, Hoboken, NJ 07030 USA
[3] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
关键词
RECOGNITION;
D O I
10.1364/OL.464288
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose and experimentally demonstrate an optical reservoir computing system in free space, using second-harmonic generation for nonlinear kernel functions and a scattering medium to enhance reservoir nodes interconnection. We test it for one-step and multi-step predication of Mackey-Glass time series with different input-mapping methods on a spatial light modulator. For one-step prediction, we achieve 1.8 x 10(-3) normalized mean squared error (NMSE). For the multi-step prediction, we explore two different mapping methods: linear-combination and concatenation, achieving 16-step prediction with NMSE as low as 3.5 x 10(-4). Robust and superior for multi-step prediction, our approach and design have potential for parallel data processing tasks such as video prediction, speech translation, and so on. (C) 2022 Optica Publishing Group
引用
收藏
页码:3784 / 3787
页数:4
相关论文
共 26 条
[1]  
[Anonymous], 2001, ADAPT LEARN SYST SIG
[2]  
[Anonymous], 2013, Advances in neural information processing systems
[3]   Human action recognition with a large-scale brain-inspired photonic computer [J].
Antonik, Piotr ;
Marsal, Nicolas ;
Brunner, Daniel ;
Rontani, Damien .
NATURE MACHINE INTELLIGENCE, 2019, 1 (11) :530-537
[4]   Large-Scale Spatiotemporal Photonic Reservoir Computer for Image Classification [J].
Antonik, Piotr ;
Marsal, Nicolas ;
Rontani, Damien .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (01)
[5]   Reinforcement learning in a large-scale photonic recurrent neural network [J].
Bueno, J. ;
Maktoobi, S. ;
Froehly, L. ;
Fischer, I. ;
Jacquot, M. ;
Larger, L. ;
Brunner, D. .
OPTICA, 2018, 5 (06) :756-760
[6]   Conditions for reservoir computing performance using semiconductor lasers with delayed optical feedback [J].
Bueno, Julian ;
Brunner, Daniel ;
Soriano, Miguel C. ;
Fischer, Ingo .
OPTICS EXPRESS, 2017, 25 (03) :2401-2412
[7]   Optical Reservoir Computing Using Multiple Light Scattering for Chaotic Systems Prediction [J].
Dong, Jonathan ;
Rafayelyan, Mushegh ;
Krzakala, Florent ;
Gigan, Sylvain .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (01) :1-12
[8]  
Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947
[9]   Large-Scale Optical Neural Networks Based on Photoelectric Multiplication [J].
Hamerly, Ryan ;
Bernstein, Liane ;
Sludds, Alexander ;
Soljacic, Marin ;
Englund, Dirk .
PHYSICAL REVIEW X, 2019, 9 (02)
[10]   Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication [J].
Jaeger, H ;
Haas, H .
SCIENCE, 2004, 304 (5667) :78-80