Unsteady layered vortical fluid flows

被引:20
作者
Aristov, S. N. [1 ]
Prosviryakov, E. Yu. [1 ]
机构
[1] Russian Acad Sci, Inst Engn Sci, Ural Branch, Ul Komsomolskaya 34, Ekaterinburg 620049, Russia
关键词
Newtonian vortical fluid; Navier-Stokes equations; Couette flow; enhancement velocity; exact solutions;
D O I
10.1134/S0015462816020034
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An exact time-dependent solution of the system of Navier-Stokes equations governing large-scale viscous vortical incompressible flows is derived. The solution generalizes that describing the Couette flow. Two ways of preassigning the boundary conditions at the upper boundary of a fluid layer are considered. These are the time-dependent variation of the velocity value with the conservation of its direction and the variation of the angle at which the velocities parallel to the coordinate axes are directed. It is shown that at certain values of vorticity, viscosity, and the layer thickness the velocities within the layer can be severalfold greater than the given velocity at the boundary.
引用
收藏
页码:148 / 154
页数:7
相关论文
共 25 条
[1]  
Abramyan A. K., 2012, Mathematical Simulation, V24, P3
[2]  
[Anonymous], IZV AKAD NAUK F
[3]  
Aristov S. N., 2014, Russian Journal of Nonlinear Dynamics, V10, P177
[4]  
Aristov S.N., 2006, TEOR OSN KHIM TEKN, V43, P547
[5]  
Babkin V.A., 2003, INZH FIZ ZH, V76, P49
[6]   ANALYSIS OF A NONLINEAR DYNAMIC MODEL OF THE COUETTE FLOW FOR STRUCTURED LIQUID IN A FLAT GAP [J].
Belyayeva, N. A. ;
Kuznetsov, K. P. .
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2012, (02) :85-92
[8]  
Couette M.M., 1890, Annales de chimie et de physique, V6-21, P433
[9]  
Drazin P.G., 2006, The Navier-Stokes equations: a classification of flows and exact solutions
[10]  
Gavrilenko S.L., 2002, PRIKL MEKH TEKH FIZ, V43, P117