Non-linear compensation and displacement control of the bias-rate-dependent hysteresis of a magnetostrictive actuator

被引:24
作者
Zhu, Wei [1 ]
Bian, Lei Xiang [2 ]
Cheng, Lei [3 ]
Rui, Xiao Ting [1 ]
机构
[1] Nanjing Univ Sci & Technol, Inst Launch Dynam, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing, Jiangsu, Peoples R China
[3] Chongqing Acad Metrol & Qual Inspect, Chongqing, Peoples R China
来源
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY | 2017年 / 50卷
基金
中国国家自然科学基金;
关键词
Magnetostrictive actuator; Bouc-Wen model; Compensation; MODEL; BEHAVIOR; TRACKING;
D O I
10.1016/j.precisioneng.2017.04.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetostrictive actuators invariably exhibit bias-rate-dependent hysteresis, which could cause vibration and error in the micro-positioning control. We present a methodology for linearization control for the hysteresis of a magnetostrictive actuator with a wide range of input rates and biases. The hysteresis compensation is attained through application of a dynamic Bouc-Wen model and experimental measured hysteresis properties of the magnetostrictive actuator under inputs with different frequencies and biases. The effectiveness of the compensator for hysteresis is demonstrated through experimental results of the magnetostrictive actuator under inputs at different frequencies and bias levels. Based on the proposed compensator, a displacement PID controller is applied to force the output displacement of the magnetostrictive actuator to track the desired displacement accurately thereafter. The maximum absolute tracking errors is 0.052 mu m. Compared to the control results without the. compensator, the compensator can reduce the control error by about 85%. The results indicate that this study provides an effective method which can compensate the hysteresis of the magnetostrictive actuator under different frequencies and biases of inputs. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:107 / 113
页数:7
相关论文
共 20 条
[1]   Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators [J].
Al Janaideh, Mohammad ;
Su, Chun-Yi ;
Rakheja, Subash .
SMART MATERIALS AND STRUCTURES, 2008, 17 (03)
[2]   Rate-bias-dependent hysteresis modeling of a magnetostrictive transducer [J].
Aljanaideh, Omar ;
AL-Tahat, Mohammad D. ;
Al Janaideh, Mohammad .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2016, 22 (04) :883-892
[3]   Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers [J].
Bichurin, MI ;
Petrov, VM ;
Srinivasan, G .
PHYSICAL REVIEW B, 2003, 68 (05)
[4]   Modeling the Dynamic Behavior of Magnetostrictive Actuators [J].
Bottauscio, Oriano ;
Roccato, Paolo E. ;
Zucca, Mauro .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) :3022-3028
[5]   A model of magnetostrictive actuators for active vibration control [J].
Braghin, F. ;
Cinquemani, S. ;
Resta, F. .
SENSORS AND ACTUATORS A-PHYSICAL, 2011, 165 (02) :342-350
[6]   Phenomenological dynamic model of a magnetostrictive actuator [J].
Davino, D ;
Natale, C ;
Pirozzi, S ;
Visone, C .
PHYSICA B-CONDENSED MATTER, 2004, 343 (1-4) :112-116
[7]   Optimal LuGre friction model identification based on genetic algorithm and sliding mode control of a piezoelectric-actuating table [J].
Huang, Shiuh-Jer ;
Chiu, Chun-Ming .
TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2009, 31 (02) :181-203
[8]   A constitutive model for ferroelectric PZT ceramics under uniaxial loading [J].
Kamlah, M ;
Jiang, Q .
SMART MATERIALS AND STRUCTURES, 1999, 8 (04) :441-459
[9]   Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve [J].
Karunanidhi, S. ;
Singaperumal, M. .
SENSORS AND ACTUATORS A-PHYSICAL, 2010, 157 (02) :185-197
[10]   Modeling piezoceramic transducer hysteresis in the structural vibration control problem [J].
Lee, SH ;
Royston, TJ .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2000, 108 (06) :2843-2855