Changes in Chondrogenic Phenotype and Gene Expression Profiles Associated with the In Vitro Expansion of Human Synovium-Derived Cells

被引:16
作者
Han, Hyuk-Soo [1 ]
Lee, Sahnghoon [1 ]
Kim, Ji Hyun [1 ]
Seong, Sang Cheol [1 ]
Lee, Myung Chul [1 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Orthopaed Surg, Seoul 110744, South Korea
关键词
mesenchymal stem cell; synovium; differentiation; chondrogenesis; cellular therapy; MESENCHYMAL STEM-CELLS; MARROW STROMAL CELLS; BONE-MARROW; PROGENITOR CELLS; ARTICULAR CHONDROCYTES; ADIPOSE-TISSUE; DIFFERENTIATION; CARTILAGE; MEMBRANE; AGE;
D O I
10.1002/jor.21129
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
We undertook this study to characterize changes in the proliferative capacities, chondrogenic phenotypes, and gene expression profiles of human synovium-derived progenitor cells from osteoarthritic patients during in vitro expansion Cells isolated from osteoarthritic synovia were cultured, and growth rates during serial passages were evaluated Surface molecule expressions were determined by flow cytometry and cytogenetic analyses were performed After chondrogenic differentiation in cell pellets, we evaluated type II collagen and glycosaminoglycan (GAG) synthesis To assess whether the in vitro expansion of synovium-derived cells affects gene expression, we performed microarray analyses on cells at passage 0, 1, 2, 4, 6, and 8. Synovium-derived cells were rapidly expanded in vitro through passage 8 (about 130 days), and after passage 6, the proliferation rates decreased slightly with a wide range of individual variations The expressions of CD166, CD49a, and CD106 decreased, whereas those of CD10, CD29, CD44, CD73, CD90, and CM 05 showed no significant change Karyotype analysis revealed no evidence of chromosome abnormalities The staining of type II collagen and GAG in differentiated cell pellets showed rapid weakening Genome-wide microarray analysis showed that synovium-derived cells from late passages over-expressed genes associated with cell cycle prolongation and cell aging, and less-expressed genes associated with cell growth stimulation The in vitro expansion of synovium-derived cells was accompanied with decreased proliferative capacity and the chondrogenic phenotype, which might be modulated by change in gene expression patterns (C) 2010 Orthopaedic Research Society Published by Wiley Periodicals, Inc J Orthop Res 28.1283-1291, 2010
引用
收藏
页码:1283 / 1291
页数:9
相关论文
共 47 条
[1]   Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene in despite of extensive proliferation [J].
Abdallah, BM ;
Haack-Sorensen, M ;
Burns, JS ;
Elsnab, B ;
Jakob, F ;
Hokland, P ;
Kassem, M .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 326 (03) :527-538
[2]   Hepatic stem cells [J].
Alison, M ;
Sarraf, C .
JOURNAL OF HEPATOLOGY, 1998, 29 (04) :676-682
[3]   Osteogenic differentiation of noncultured immunoisolated bone marrow-derived CD105+ cells [J].
Aslan, Hadi ;
Zilberman, Yoram ;
Kandel, Leonid ;
Liebergall, Meir ;
Oskouian, Rod J. ;
Gazit, Dan ;
Gazit, Zulma .
STEM CELLS, 2006, 24 (07) :1728-1737
[4]   Overexpression of active TGF-beta-1 in the murine knee joint: evidence for synovial-layer-dependent chondro-osteophyte formation [J].
Bakker, AC ;
van de Loo, FAJ ;
van Beuningen, HM ;
Sime, P ;
van Lent, PLEM ;
van der Kraan, PM ;
Richards, CD ;
van den Berg, WB .
OSTEOARTHRITIS AND CARTILAGE, 2001, 9 (02) :128-136
[5]   Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion [J].
Baxter, MA ;
Wynn, RF ;
Jowitt, SN ;
Wraith, JE ;
Fairbairn, LJ ;
Bellantuono, I .
STEM CELLS, 2004, 22 (05) :675-682
[6]  
Bergman RJ, 1996, J BONE MINER RES, V11, P568
[7]   Aging of mesenchymal stem cell in vitro [J].
Bonab, MM ;
Alimoghaddam, K ;
Talebian, F ;
Ghaffari, SH ;
Ghavamzadeh, A ;
Nikbin, B .
BMC CELL BIOLOGY, 2006, 7 (1)
[8]   ArrayXPath: mapping and visualizing microarray gene-expression data with integrated biological pathway resources using Scalable Vector Graphics [J].
Chung, HJ ;
Kim, M ;
Park, CH ;
Kim, J ;
Kim, JH .
NUCLEIC ACIDS RESEARCH, 2004, 32 :W460-W464
[9]   Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow [J].
D'Ippolito, G ;
Schiller, PC ;
Ricordi, C ;
Roos, BA ;
Howard, GA .
JOURNAL OF BONE AND MINERAL RESEARCH, 1999, 14 (07) :1115-1122
[10]   Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis [J].
De Bari, C ;
Dell'Accio, F ;
Vanlauwe, J ;
Eyckmans, J ;
Khan, YM ;
Archer, CW ;
Jones, EA ;
McGonagle, D ;
Mitsiadis, TA ;
Pitzalis, C ;
Luyten, FP .
ARTHRITIS AND RHEUMATISM, 2006, 54 (04) :1209-1221