Fabrication and mechanical properties of the titanium matrix composites based on Ti6Al4V-ZrB2-(Si) system

被引:17
作者
Jiang, Shan [1 ]
An, Qi [1 ]
Cui, Xiping [1 ,3 ]
Xiang, Xuelian [1 ]
Huang, Lujun [1 ,2 ]
Zhang, Rui [1 ]
Sun, Yuan [4 ]
Geng, Lin [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Mat Sci & Engn, POB 433, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Ctr Anal Measurement & Comp, Harbin 150001, Peoples R China
[4] Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2021年 / 819卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
TI5SI3; CHARACTERISTICS; TENSILE PROPERTIES; ZR; MICROSTRUCTURE; ALLOYS; CREEP;
D O I
10.1016/j.msea.2021.141488
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, series of Ti matrix composites based on the Ti6Al4V-ZrB2-(Si) system were successfully fabricated through powder metallurgy. The room-temperature tensile strengths were significantly enhanced to 1063 MPa and 1185 MPa with 4.5 wt% and 9 wt% ZrB2 addition, respectively. The high-temperature tensile strength was enhanced to 501 MPa (600 degrees C) and 327 MPa (700 degrees C) for Ti64-4.5 wt%ZrB2 composite, and 693 MPa (600 degrees C) and 422 MPa (700 degrees C) for Ti64-9 wt%ZrB2 composite. As for the creep resistance, the Ti64-9 wt%ZrB2 composite exhibited the lowest steady-state creep rate of (4.88 x 10(-7) s(-1)) and the longest creep time to rupture (6.28 h). Adding Si to construct the two-scale network structure further enhanced the mechanical properties, especially at high temperature, the strengths were elevated by 26% and 39% for the Ti64-4.5 wt%ZrB2-1wt.%Si composite at 600 degrees C and 700 degrees C, respectively, and the creep resistance was markedly enhanced with the help of the second-scale silicide reinforcement network.
引用
收藏
页数:11
相关论文
共 33 条
[1]   Perspectives on Titanium Science and Technology [J].
Banerjee, Dipankar ;
Williams, J. C. .
ACTA MATERIALIA, 2013, 61 (03) :844-879
[2]   The melting diagram of the Ti-corner of the Ti-Zr-Si system and mechanical properties of as-cast compositions [J].
Bulanova, M ;
Firstov, S ;
Gornaya, I ;
Miracle, D .
JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 384 (1-2) :106-114
[3]  
Bulanova M., SI TI BINARY SYSTEM
[4]   HIGH-TEMPERATURE TITANIUM-ALLOYS - A REVIEW [J].
EYLON, D ;
FUJISHIRO, S ;
POSTANS, PJ ;
FROES, FH .
JOURNAL OF METALS, 1984, 36 (11) :55-62
[5]  
Fundamental aspects, Titanium, P15, DOI [10.1007/978-3-540-73036-1_2, DOI 10.1007/978-3-540-73036-1_2]
[6]   Joints of TiBw/Ti6Al4V composites- Inconel 718 alloys dissimilar joining using Nb and Cu interlayers [J].
Gao, Yanan ;
Huang, Lujun ;
Bao, Yang ;
An, Qi ;
Sun, Yuan ;
Zhang, Rui ;
Geng, Lin ;
Zhang, Jie .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 822
[7]   High-temperature titanium alloys [J].
Gogia, AK .
DEFENCE SCIENCE JOURNAL, 2005, 55 (02) :149-173
[8]   Influence of stacking-fault energy on high temperature creep of alpha titanium alloys [J].
Guo, Z ;
Miodownik, AP ;
Saunders, N ;
Schillé, JP .
SCRIPTA MATERIALIA, 2006, 54 (12) :2175-2178
[9]   Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? [J].
Huang, L. J. ;
Geng, L. ;
Peng, H-X. .
PROGRESS IN MATERIALS SCIENCE, 2015, 71 :93-168
[10]   High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture [J].
Huang, L. J. ;
Geng, L. ;
Peng, H. X. ;
Kaveendran, B. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 534 :688-692