Optimizing PolyACO Training with GPU-Based Parallelization

被引:3
作者
Tufteland, Torry [1 ]
Odesneltvedt, Guro [1 ]
Goodwin, Morten [1 ]
机构
[1] Univ Agder, Dept ICT, Inst Sci & Technol, Agder, Norway
来源
SWARM INTELLIGENCE | 2016年 / 9882卷
关键词
ACO; Cost function; GPU; ANT COLONY OPTIMIZATION;
D O I
10.1007/978-3-319-44427-7_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A central part of Ant Colony Optimisation (ACO) is the function calculating the quality and cost of solutions, such as the distance of a potential ant route. This cost function is used to deposit an opportune amount of pheromones to achieve an apt convergence, and in an active ACO implementation a significant part of the runtime is spent in this part of the code. In some cases, the cost function accumulates up towards 94 % in its run time making it a performance bottle neck. In this paper we parallelize and move the central parts of the cost function to Graphics Processing Unit (GPU). We further test and measure the performance using the ACO classification approach PolyACO. This GPU based parallelization has a tremendous impact on the performance. The duration of the cost function is reduced to 0.5 % of its original runtime. The over all performance of PolyACO implementation is reduced down towards a remarkable 7% of its original running time - an improvement factor of 14.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 14 条
[1]   An ACO hybrid metaheuristic for close-open vehicle routing problems with time windows and fuzzy constraints [J].
Brito, J. ;
Martinez, F. J. ;
Moreno, J. A. ;
Verdegay, J. L. .
APPLIED SOFT COMPUTING, 2015, 32 :154-163
[2]  
Chen T, 2015, INT J ADV COMPUT SC, V6, P47
[3]  
Dawson L, 2013, 2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), P1901
[4]   Ant colony optimization -: Artificial ants as a computational intelligence technique [J].
Dorigo, Marco ;
Birattari, Mauro ;
Stuetzle, Thomas .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2006, 1 (04) :28-39
[5]   Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation [J].
Garcia, M. A. Porta ;
Montiel, Oscar ;
Castillo, Oscar ;
Sepulveda, Roberto ;
Melin, Patricia .
APPLIED SOFT COMPUTING, 2009, 9 (03) :1102-1110
[6]  
Goodwin M, 2016, ANT COLONY OPTIMISAT
[7]  
Hongtao Bai, 2009, 2009 Fourth International Conference on Innovative Computing, Information and Control (ICICIC 2009), P801, DOI 10.1109/ICICIC.2009.255
[8]   Towards Multilevel Ant Colony Optimisation for the Euclidean Symmetric Traveling Salesman Problem [J].
Lian, Thomas Andre ;
Llave, Marilex Rea ;
Goodwin, Morten ;
Bouhmala, Noureddine .
CURRENT APPROACHES IN APPLIED ARTIFICIAL INTELLIGENCE, 2015, 9101 :222-231
[9]   Parallel Ant Colony Optimization for the HP Protein Folding Problem [J].
Llanes, Antonio ;
Velez, Carlos ;
Sanchez, Antonia M. ;
Perez-Sanchez, Horacio ;
Cecilia, Jose M. .
BIOINFORMATICS AND BIOMEDICAL ENGINEERING (IWBBIO 2016), 2016, 9656 :615-626
[10]   Classification with ant colony optimization [J].
Martens, David ;
De Backer, Manu ;
Haesen, Raf ;
Vanthienen, Jan ;
Snoeck, Monique ;
Baesens, Bart .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2007, 11 (05) :651-665