ON THE CHOW RING OF THE CLASSIFYING STACK OF ALGEBRAIC TORI

被引:0
作者
Sala, Francesco [1 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
来源
DOCUMENTA MATHEMATICA | 2022年 / 27卷
关键词
Chow ring; torsion classes; classifying stack; torsors;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the structure of the Chow ring of the classifying stacks BT of algebraic tori, as it has been defined by B. Totaro. Some previous work of N. Karpenko, A. Merkurjev, S. Blinstein and F. Scavia has shed some light on the structure of such rings. In particular Karpenko showed the absence of torsion classes in the case of permutation tori, while Merkurjev and Blinstein described in a very effective way the second equivariant Chow group A(T)(2) in the general case. Building on this work, Scavia exhibited an example where (A(T)(2))(tors) not equal 0 . Here, by making use of a very elementary approach, we extend the result of Karpenko to special tori and we completely determine the Chow ring A(T)* when T is an algebraic torus admitting a resolution with special tori 0 -> T -> Q -> P. In particular we show that there can be torsion in the Chow ring of such tori.
引用
收藏
页码:917 / 932
页数:16
相关论文
共 13 条
[1]   Cohomological invariants of algebraic tori [J].
Blinstein, Sam ;
Merkurjev, Alexander .
ALGEBRA & NUMBER THEORY, 2013, 7 (07) :1643-1684
[2]  
Demazure M., 1971, SEMINAIRE BOURBAKI, V1969/70, P19
[3]  
Edidin D, 1998, INVENT MATH, V131, P595, DOI 10.1007/s002220050214
[4]  
Fulton W., 1997, Intersection Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3
[5]   SPECIAL REDUCTIVE GROUPS OVER AN ARBITRARY FIELD [J].
Huruguen, Mathieu .
TRANSFORMATION GROUPS, 2016, 21 (04) :1079-1104
[6]   Weil transfer of algebraic cycles [J].
Karpenko, NA .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (01) :73-86
[7]   On a pairing for algebraic tori [J].
Merkurjev, A. .
MATHEMATISCHE NACHRICHTEN, 2019, 292 (10) :2283-2293
[8]  
Milne JamesS., 2017, Algebraic groups: The theory of group schemes of finite type over a field, V170, DOI DOI 10.1017/9781316711736
[9]  
Rojas LAM, 2006, REND SEMIN MAT U PAD, V116, P271
[10]  
Reichstein Z, 2020, DOC MATH, V25, P171