Eliminating Dendrites through Dynamically Engineering the Forces Applied during Li Deposition for Stable Lithium Metal Anodes

被引:38
作者
Ren, Lingxiao [1 ]
Wang, Aoxuan [1 ]
Zhang, Xinyue [1 ]
Li, Guojie [1 ,2 ]
Liu, Xingjiang [1 ,3 ]
Luo, Jiayan [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, State Key Lab Chem Engn, Key Lab Green Chem Technol,Minist Educ, Tianjin 300072, Peoples R China
[2] Zhengzhou Univ, Minist Educ, Key Lab Mat Proc & Mold, Zhengzhou 450002, Henan, Peoples R China
[3] Tianjin Inst Power Sources, Natl Key Lab Sci & Technol Power Sources, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
dendrite; elimination; energy; force; lithium metal batteries; CYCLE-LIFE; GROWTH; CHALLENGES; STRESS; ELECTRODEPOSITION; BATTERIES; CATHODE; LIQUID; MODEL; LAYER;
D O I
10.1002/aenm.201902932
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal anodes are considered the most promising anode for next-generation high-energy-density batteries due to their high theoretical capacity and low electrochemical potential. However, intractable barriers, especially the notorious dendrite growth, severe volume expansion, and side reactions, have obstructed its large-scale application. Numerous strategies from different points of view are explored to surmount these obstacles. Within these efforts, dynamically engineering the forces applied during the electrochemical process plays a significant role, as they can potentially eliminate the dendrite growth. In this Research News article, the relationship between different kinds of forces and the behavior of Li+/Li during the lithium deposition process is first explicated. Advanced strategies in building dendrite-free Li anodes through dynamically engineering these forces are also summarized by sorting the Li deposition process into three stages: Li+ transport in electrolyte, Li+ reduction/Li atom surface migration, and Li bulk diffusion. Future perspectives and promising research directions for dendrite control are finally proposed. It is expected that dynamically engineering the forces applied during Li deposition will pave the way for next-generation high-energy-density rechargeable Li metal batteries.
引用
收藏
页数:8
相关论文
共 61 条
  • [1] Factors which limit the cycle life of rechargeable lithium (metal) batteries
    Aurbach, D
    Zinigrad, E
    Teller, H
    Dan, P
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) : 1274 - 1279
  • [2] Transition of lithium growth mechanisms in liquid electrolytes
    Bai, Peng
    Li, Ju
    Brushett, Fikile R.
    Bazant, Martin Z.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) : 3221 - 3229
  • [3] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
  • [4] 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries
    Cha, Eunho
    Patel, Mumukshu D.
    Park, Juhong
    Hwang, Jeongwoon
    Prasad, Vish
    Cho, Kyeongjae
    Choi, Wonbong
    [J]. NATURE NANOTECHNOLOGY, 2018, 13 (04) : 337 - +
  • [5] Understanding Residual Stress in Electrodeposited Cu Thin Films
    Chason, Eric
    Engwall, Alison
    Pei, Fei
    Lafouresse, Manon
    Bertocci, Ugo
    Stafford, Gery
    Murphy, Joseph A.
    Lenihan, Catherine
    Buckley, D. Noel
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (12) : D3285 - D3289
  • [6] Growth of whiskers from Sn surfaces: Driving forces and growth mechanisms
    Chason, Eric
    Jadhav, Nitin
    Pei, Fei
    Buchovecky, Eric
    Bower, Allan
    [J]. PROGRESS IN SURFACE SCIENCE, 2013, 88 (02) : 103 - 131
  • [7] Lithium Dendrites Inhibition via Diffusion Enhancement
    Chen, Yongxiu
    Dou, Xiangyu
    Wang, Kai
    Han, Yongsheng
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (17)
  • [8] Nanodiamonds suppress the growth of lithium dendrites
    Cheng, Xin-Bing
    Zhao, Meng-Qiang
    Chen, Chi
    Pentecost, Amanda
    Maleski, Kathleen
    Mathis, Tyler
    Zhang, Xue-Qiang
    Zhang, Qiang
    Jiang, Jianjun
    Gogotsi, Yury
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [9] Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
    Cheng, Xin-Bing
    Zhang, Rui
    Zhao, Chen-Zi
    Zhang, Qiang
    [J]. CHEMICAL REVIEWS, 2017, 117 (15) : 10403 - 10473
  • [10] Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries
    Cheng, Xin-Bing
    Hou, Ting-Zheng
    Zhang, Rui
    Peng, Hong-Jie
    Zhao, Chen-Zi
    Huang, Jia-Qi
    Zhang, Qiang
    [J]. ADVANCED MATERIALS, 2016, 28 (15) : 2888 - 2895