Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems

被引:29
作者
Coelho, Santiago [1 ]
Baete, Steven H. [1 ]
Lemberskiy, Gregory [1 ]
Ades-Aron, Benjamin [1 ]
Barrol, Genevieve [1 ]
Veraart, Jelle [1 ]
Novikov, Dmitry S. [1 ]
Fieremans, Els [1 ]
机构
[1] NYU, Bernard & Irene Schwartz Ctr Biomed Imaging, Sch Med, Dept Radiol, New York, NY 10012 USA
关键词
Microstructure; Standard Model; Diffusion; White matter; Experimental design; Reproducibility; DENSITY; QUANTIFICATION; ECCENTRICITY; PARAMETERS; METRICS; BALL; NMR;
D O I
10.1016/j.neuroimage.2022.119290
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Estimating intra-and extra-axonal microstructure parameters, such as volume fractions and diffusivities, has been one of the major efforts in brain microstructure imaging with MRI. The Standard Model (SM) of diffusion in white matter has unified various modeling approaches based on impermeable narrow cylinders embedded in locally anisotropic extra-axonal space. However, estimating the SM parameters from a set of conventional diffusion MRI (dMRI) measurements is ill-conditioned. Multidimensional dMRI helps resolve the estimation degeneracies, but there remains a need for clinically feasible acquisitions that yield robust parameter maps. Here we find optimal multidimensional protocols by minimizing the mean-squared error of machine learning-based SM parameter estimates for two 3T scanners with corresponding gradient strengths of 40 and 80mT/m. We assess intra-scanner and inter-scanner repeatability for 15-minute optimal protocols by scanning 20 healthy volunteers twice on both scanners. The coefficients of variation all SM parameters except free water fraction are less than or similar to 10% voxelwise and 1 - 4% for their region-averaged values. As the achieved SM reproducibility outcomes are similar to those of conventional diffusion tensor imaging, our results enable robust in vivo mapping of white matter microstructure in neuroscience research and in the clinic.
引用
收藏
页数:12
相关论文
共 74 条
[11]   The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites [J].
Casey, B. J. ;
Cannonier, Tariq ;
Conley, May I. ;
Cohen, Alexandra O. ;
Barch, Deanna M. ;
Heitzeg, Mary M. ;
Soules, Mary E. ;
Teslovich, Theresa ;
Dellarco, Danielle V. ;
Garavan, Hugh ;
Orr, Catherine A. ;
Wager, Tor D. ;
Banich, Marie T. ;
Speer, Nicole K. ;
Sutherland, Matthew T. ;
Riedel, Michael C. ;
Dick, Anthony S. ;
Bjork, James M. ;
Thomas, Kathleen M. ;
Chaarani, Bader ;
Mejia, Margie H. ;
Hagler, Donald J., Jr. ;
Cornejo, M. Daniela ;
Sicat, Chelsea S. ;
Harms, Michael P. ;
Dosenbach, Nico U. F. ;
Rosenberg, Monica ;
Earl, Eric ;
Bartsch, Hauke ;
Watts, Richard ;
Polimeni, Jonathan R. ;
Kuperman, Joshua M. ;
Fair, Damien A. ;
Dale, Anders M. .
DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2018, 32 :43-54
[12]  
Coelho S., 2021, P INT SOC MAGNETIC R
[13]  
Coelho S., 2021, P INT SOC MAGNETIC R, V30, P397
[14]  
Coelho S., 2019, MEDICAL IMAGE COMPUT
[15]   Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding [J].
Coelho, Santiago ;
Pozo, Jose M. ;
Jespersen, Sune N. ;
Jones, Derek K. ;
Frangi, Alejandro F. .
MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (01) :395-410
[16]  
Cramer H., 1946, Mathematical Methods in Statistics
[17]  
Dhital B., 2018, P INT SOC MAGNETIC R
[18]   Intra-axonal diffusivity in brain white matter [J].
Dhital, Bibek ;
Reisert, Marco ;
Kellner, Elias ;
Kiselev, Valerij G. .
NEUROIMAGE, 2019, 189 :543-550
[19]   Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector [J].
Eriksson, Stefanie ;
Lasic, Samo ;
Topgaard, Daniel .
JOURNAL OF MAGNETIC RESONANCE, 2013, 226 :13-18
[20]  
Fieremans E., 2012, P INT SOC MAGNETIC R