On classical solutions to the Cauchy problem of the 2D compressible non-resistive MHD equations with vacuum states

被引:9
作者
Chen, Mingtao [1 ]
Zang, Aibin [2 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
[2] Yichun Univ, Ctr Appl Math, Yichun 336000, Jiangxi, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
2D compressible non-resistive MHD equations; vacuum; classical solutions; blowup criterion; NAVIER-STOKES EQUATIONS; MAGNETOHYDRODYNAMIC EQUATIONS; REGULARITY CRITERION; LARGE OSCILLATIONS; GLOBAL EXISTENCE; LOCAL EXISTENCE; BLOWUP; SYSTEM; FLOWS;
D O I
10.1088/1361-6544/aa7e97
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Cauchy problem of the compressible nonresistive MHD on R-2 with a vacuum as the far field density. We prove that the two-dimensional (2D) Cauchy problem has a unique local strong solution provided that the initial density and magnetic field decay are not too slow at infinity. Furthermore, if the initial data satisfies some additional regularity and compatibility conditions, the strong solution becomes a classical one. Additionally, we establish a blowup criterion for the 2D compressible nonresistive MHD depending solely on the density and magnetic fields.
引用
收藏
页码:3637 / 3675
页数:39
相关论文
共 35 条
[1]  
CABANNES H., 1970, Theoretical Magnetofluiddynamics
[2]  
Chandrasekhar S., 1961, Hydrodynamic and Hydromagnetic Stability
[3]   Local existence for the non-resistive MHD equations in Besov spaces [J].
Chemin, Jean-Yves ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
ADVANCES IN MATHEMATICS, 2016, 286 :1-31
[4]   Unique solvability of the initial boundary value problems for compressible viscous fluids [J].
Cho, Y ;
Choe, HJ ;
Kim, H .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (02) :243-275
[5]   Strong solution to the compressible magnetohydrodynamic equations with vacuum [J].
Fan, Jishan ;
Yu, Wanghui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :392-409
[6]   Global cauchy problem of 2D generalized MHD equations [J].
Fan, Jishan ;
Malaikah, Honaida ;
Monaquel, Satha ;
Nakamura, Gen ;
Zhou, Yong .
MONATSHEFTE FUR MATHEMATIK, 2014, 175 (01) :127-131
[7]   Local Existence for the Non-Resistive MHD Equations in Nearly Optimal Sobolev Spaces [J].
Fefferman, Charles L. ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (02) :677-691
[8]   Higher order commutator estimates and local existence for the non-resistive MHD equations and related models [J].
Fefferman, Charles L. ;
McCormick, David S. ;
Robinson, James C. ;
Rodrigo, Jose L. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (04) :1035-1056
[9]  
Feireisl E., 2004, Dynamics of Viscous Compressible Fluids (Oxford Lecture Series in Mathematics and Its Applications vol 26)
[10]   IDEAL MAGNETO-HYDRODYNAMIC THEORY OF MAGNETIC FUSION SYSTEMS [J].
FREIDBERG, JP .
REVIEWS OF MODERN PHYSICS, 1982, 54 (03) :801-902