Multi solitary waves for a fourth order nonlinear Schrodinger type equation

被引:1
作者
Wang, Zhong [1 ]
机构
[1] Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
关键词
Multi solitary waves; Fourth order; Schrodinger equation; Vortex filament; STANDING WAVES; WELL-POSEDNESS; MULTISOLITON SOLUTIONS; STABILITY; SOLITONS; CONSTRUCTION; EXISTENCE; GKDV;
D O I
10.1016/j.nonrwa.2017.02.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we prove the existence of multi solitary waves of a fourth order SchrOdinger equation (4NLS) which describes the motion of the vortex filament. These solutions behave at large time as sum of stable Hasimoto solitons. It is obtained by solving the system backward in time around a sequence of approximate multi solitary waves and showing convergence to a solution with the desired property. The new ingredients of the proof are modulation theory, virial identity adapted to 4NLS and energy estimates. Compare to NLS, 4NLS does not preserve Galilean transform which contributes the main difficulty in spectral analysis of the corresponding linearized operator around the Hasimoto solitons. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:287 / 308
页数:22
相关论文
共 36 条
[1]   Multi-Solitary Waves for the Nonlinear Klein-Gordon Equation [J].
Bellazzini, Jacopo ;
Ghimenti, Marco ;
Le Coz, Stefan .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (08) :1479-1522
[2]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[3]  
Boulenger T., ARXIV150301741
[4]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[5]   Multi-Soliton Solutions for the Supercritical gKdV Equations [J].
Combet, Vianney .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (03) :380-419
[6]   MULTI-SOLITONS FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
Cote, Raphael ;
Munoz, Claudio .
FORUM OF MATHEMATICS SIGMA, 2014, 2
[7]   High-speed excited multi-solitons in nonlinear Schrodinger equations [J].
Cote, Raphael ;
Le Coz, Stefan .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (02) :135-166
[8]   Construction of multi-soliton solutions for the L2-supercritical gKdV and NLS equations [J].
Cote, Raphael ;
Martel, Yvan ;
Merle, Frank .
REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (01) :273-302
[9]   Well-posedness of higher-order nonlinear Schrodinger equations in Sobolev spaces Hs (Rn) and applications [J].
Cui, Shangbin ;
Guo, Cuihua .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (03) :687-707
[10]  
Da Rios L. S., 1906, REND CIRC MAT PALERM, V22, P117, DOI DOI 10.1007/BF03018608