Faster quantum-walk algorithm for the two-dimensional spatial search

被引:136
作者
Tulsi, Avatar [1 ]
机构
[1] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 01期
关键词
Atomic physics;
D O I
10.1103/PhysRevA.78.012310
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the problem of finding a desired item out of N items arranged on the sites of a two-dimensional lattice of size root N X root N. The previous quantum-walk based algorithms take O(root N ln N) steps to solve this problem, and it is an open question whether the performance can be improved. We present an algorithm which solves the problem in O(root N ln N) steps, thus giving an O(root ln N) improvement over the known algorithms. The improvement is achieved by controlling the quantum walk on the lattice using an ancilla qubit.
引用
收藏
页数:6
相关论文
共 11 条
[1]   Quantum search of spatial regions (extended abstract) [J].
Aaronson, S ;
Ambainis, A .
44TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2003, :200-209
[2]  
Ambainis A, 2005, PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1099
[3]  
BENIOFF P, 2002, QUANTUM COMPUTATION
[4]   Strengths and weaknesses of quantum computing [J].
Bennett, CH ;
Bernstein, E ;
Brassard, G ;
Vazirani, U .
SIAM JOURNAL ON COMPUTING, 1997, 26 (05) :1510-1523
[5]  
Brassard G., 2002, Quantum amplitude amplification and estimation
[6]   Spatial search and the Dirac equation [J].
Childs, AM ;
Goldstone, J .
PHYSICAL REVIEW A, 2004, 70 (04) :042312-1
[7]   Spatial search by quantum walk [J].
Childs, AM ;
Goldstone, J .
PHYSICAL REVIEW A, 2004, 70 (02) :022314-1
[8]   Quantum mechanics helps in searching for a needle in a haystack [J].
Grover, LK .
PHYSICAL REVIEW LETTERS, 1997, 79 (02) :325-328
[9]  
PATEL A, 2007, QIP 2008 NEW DELH
[10]   Quantum random-walk search algorithm [J].
Shenvi, N ;
Kempe, J ;
Whaley, KB .
PHYSICAL REVIEW A, 2003, 67 (05)