How to Learn from Unlabeled Volume Data: Self-supervised 3D Context Feature Learning

被引:21
作者
Blendowski, Maximilian [1 ]
Nickisch, Hannes [2 ]
Heinrich, Mattias P. [1 ]
机构
[1] Univ Lubeck, Inst Med Informat, Lubeck, Germany
[2] Philips Res Hamburg, Hamburg, Germany
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI | 2019年 / 11769卷
关键词
Self-supervised learning; Volumetric image segmentation;
D O I
10.1007/978-3-030-32226-7_72
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The vast majority of 3D medical images lacks detailed image-based expert annotations. The ongoing advances of deep convolutional neural networks clearly demonstrate the benefit of supervised learning to successfully extract relevant anatomical information and aid image-based analysis and interventions, but it heavily relies on labeled data. Self-supervised learning, that requires no expert labels, provides an appealing way to discover data-inherent patterns and leverage anatomical information freely available from medical images themselves. In this work, we propose a new approach to train effective convolutional feature extractors based on a new concept of image-intrinsic spatial offset relations with an auxiliary heatmap regression loss. The learned features successfully capture semantic, anatomical information and enable state-of-the-art accuracy for a k-NN based one-shot segmentation task without any subsequent fine-tuning.
引用
收藏
页码:649 / 657
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 2017, ICCV
[2]   BRIEF: Binary Robust Independent Elementary Features [J].
Calonder, Michael ;
Lepetit, Vincent ;
Strecha, Christoph ;
Fua, Pascal .
COMPUTER VISION-ECCV 2010, PT IV, 2010, 6314 :778-792
[3]   A deep learning framework for unsupervised affine and deformable image registration [J].
de Vos, Bob D. ;
Berendsen, Floris F. ;
Viergever, Max A. ;
Sokooti, Hessam ;
Staring, Marius ;
Isgum, Ivana .
MEDICAL IMAGE ANALYSIS, 2019, 52 :128-143
[4]  
Doersch C., 2015, P INT C COMP VIS ICC
[5]  
Ferrante E., 2018, IEEE J BIOMED HLTH I
[6]  
Heinrich Mattias P., 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P598, DOI 10.1007/978-3-319-46723-8_69
[7]  
Jamaludin A., 2017, DLMIA
[8]   Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms: VISCERAL Anatomy Benchmarks [J].
Jimenez-del-Toro, Oscar ;
Muller, Henning ;
Krenn, Markus ;
Gruenberg, Katharina ;
Taha, Abdel Aziz ;
Winterstein, Marianne ;
Eggel, Ivan ;
Foncubierta-Rodriguez, Antonio ;
Goksel, Orcun ;
Jakab, Andres ;
Kontokotsios, Georgios ;
Langs, Georg ;
Menze, Bjoern H. ;
Fernandez, Tomas Salas ;
Schaer, Roger ;
Walleyo, Anna ;
Weber, Marc-Andre ;
Cid, Yashin Dicente ;
Gass, Tobias ;
Heinrich, Mattias ;
Jia, Fucang ;
Kahl, Fredrik ;
Kechichian, Razmig ;
Mai, Dominic ;
Spanier, Assaf B. ;
Vincent, Graham ;
Wang, Chunliang ;
Wyeth, Daniel ;
Hanbury, Allan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (11) :2459-2475
[9]  
Maier-Hein L., 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P616, DOI 10.1007/978-3-319-46723-8_71
[10]  
Payer Christian, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P230, DOI 10.1007/978-3-319-46723-8_27