How Noninnocent Spectator Species Improve the Oxygen Reduction Activity of Single-Atom Catalysts: Microkinetic Models from First-Principles Calculations

被引:53
作者
Rebarchik, Michael [1 ]
Bhandari, Saurabh [1 ]
Kropp, Thomas [1 ]
Mavrikakis, Manos [1 ]
机构
[1] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
density functional theory; graphene; microkinetic model; oxygen reduction reaction; single-atom catalyst; NITROGEN-DOPED GRAPHENE; TOTAL-ENERGY CALCULATIONS; LATE TRANSITION-METALS; CO OXIDATION; SITES; IRON; EFFICIENT; COBALT;
D O I
10.1021/acscatal.0c01642
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene-based single-atom catalysts are promising alternatives to platinum-based catalysts for fuel cell applications. Different transition metals have been screened using electronic structure methods by estimating onset potentials from the most endergonic elementary reaction step. We calculate onset potentials for the oxygen reduction reaction on metal atoms embedded in N-substituted graphene di-vacancies by virtue of first-principles-informed microkinetic analysis. We find that for more oxophilic metals (Cr, Fe, Mn, and Ru), purely thermodynamic models systematically underestimate onset potentials. Furthermore, the oxophilic metals (Cr, Fe, Mn, and Ru) are oxidized under reaction conditions, leading to an increase in activity compared to their reduced state. Importantly, coadsorbed OmHn species actively participate in the reaction, which requires a dynamic treatment of spectator species. These findings highlight the limitations of thermodynamic analyses for electrocatalytic processes, which commonly assume the same oxidation state for each metal, and show that deviations between computational and experimental onset potentials cannot be solely attributed to the shortcomings of the electronic structure methods.
引用
收藏
页码:9129 / 9135
页数:7
相关论文
共 40 条
[1]  
[Anonymous], 2018, NIST CHEM WEBBOOK
[2]   Single Metal Atoms Anchored in Two-Dimensional Materials: Bifunctional Catalysts for Fuel Cell Applications [J].
Back, Seoin ;
Kulkarni, Ambarish R. ;
Siahrostami, Samira .
CHEMCATCHEM, 2018, 10 (14) :3034-3039
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions [J].
Calle-Vallejo, Federico ;
Ignacio Martinez, Jose ;
Rossmeisl, Jan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (34) :15639-15643
[5]   Micro- and macro-kinetics: their relationship in heterogeneous catalysis [J].
Campbell, Charles T. .
TOPICS IN CATALYSIS, 1994, 1 (3-4) :353-366
[6]   Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction [J].
Cao, Linlin ;
Luo, Qiquan ;
Chen, Jiajia ;
Wang, Lan ;
Lin, Yue ;
Wang, Huijuan ;
Liu, Xiaokang ;
Shen, Xinyi ;
Zhang, Wei ;
Liu, Wei ;
Qi, Zeming ;
Jiang, Zheng ;
Yang, Jinlong ;
Yao, Tao .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction [J].
Chen, Xiaoqi ;
Yu, Liang ;
Wang, Suheng ;
Deng, Dehui ;
Bao, Xinhe .
NANO ENERGY, 2017, 32 :353-358
[8]   The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium [J].
Choi, Chang Hyuck ;
Lim, Hyung-Kyu ;
Chung, Min Wook ;
Chon, Gajeon ;
Sahraie, Nastaran Ranjbar ;
Altin, Abdulrahman ;
Sougrati, Moulay-Tahar ;
Stievano, Lorenzo ;
Oh, Hyun Seok ;
Park, Eun Soo ;
Luo, Fang ;
Strasser, Peter ;
Drazic, Goran ;
Mayrhofer, Karl J. J. ;
Kim, Hyungjun ;
Jaouen, Frederic .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (11) :3176-3182
[9]   Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst [J].
Chung, Hoon T. ;
Cullen, David A. ;
Higgins, Drew ;
Sneed, Brian T. ;
Holby, Edward F. ;
More, Karren L. ;
Zelenay, Piotr .
SCIENCE, 2017, 357 (6350) :479-483
[10]   A copper single-atom catalyst towards efficient and durable oxygen reduction for fuel cells [J].
Cui, Liting ;
Cui, Lirui ;
Li, Zhengjian ;
Zhang, Jin ;
Wang, Haining ;
Lu, Shanfu ;
Xiang, Yan .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (28) :16690-16695