Characterization of matrix-exponential distributions

被引:20
作者
Bean, Nigel G. [1 ]
Fackrell, Mark [2 ]
Taylor, Peter [2 ]
机构
[1] Univ Adelaide, Adelaide, SA 5005, Australia
[2] Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
关键词
matrix-exponential distribution; rational Laplace-Stieltjes transform;
D O I
10.1080/15326340802232186
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The class of matrix-exponential distributions can be equivalently defined as the class of all distributions with rational Laplace-Stieltjes transform. An immediate question that arises is: when does a rational Laplace-Stieltjes transform correspond to a matrix-exponential distribution? For a rational Laplace-Stieltjes transform that has a pole of maximal real part that is real and negative, we give a geometric description of all admissible numerator polynomials that give rise to matrix-exponential distributions. Using this approach we give a complete characterization for all matrix-exponential distributions of order three.
引用
收藏
页码:339 / 363
页数:25
相关论文
共 51 条
[1]  
[Anonymous], 1995, Integral Transforms and Their Applications
[2]  
[Anonymous], APPL MATH SCI
[3]  
[Anonymous], 1993, MONOGR STAT APPL PRO, DOI DOI 10.1201/9780203748039
[4]  
Apostol Tom M, 1969, Calculus, VII
[5]   An operational calculus for matrix-exponential distributions, with applications to a Brownian (q, Q) inventory model [J].
Asmussen, S ;
Perry, D .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (01) :166-176
[6]  
Asmussen S, 1997, LECT NOTES PURE APPL, V183, P313
[7]   Point processes with finite-dimensional conditional probabilities [J].
Asmussen, S ;
Bladt, M .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 82 (01) :127-142
[8]   COMPUTATIONAL METHODS IN RISK THEORY - A MATRIX-ALGORITHMIC APPROACH [J].
ASMUSSEN, S ;
ROLSKI, T .
INSURANCE MATHEMATICS & ECONOMICS, 1992, 10 (04) :259-274
[9]  
Asmussen S., 1998, ENCY STAT SCI UPDATE, V2, P435
[10]  
Asmussen S., 2000, ADV SERIES STAT SCI, V2