Superionic Conductivity in Lithium-Rich Anti-Perovskites

被引:495
作者
Zhao, Yusheng [1 ,2 ]
Daemen, Luke L. [2 ]
机构
[1] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA
[2] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA
关键词
NAMGF3;
D O I
10.1021/ja305709z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium ion batteries have shown great promise in elearical energy storage with enhanced energy density, power capacity, charge-discharge rates, and cycling lifetimes. However common fluid electrolytes consisting of lithium salts dissolved in solvents are toxic, corrosive, or flammable. Solid electrolytes with superionic conductivity can avoid those shortcomings and work with a metallic lithium anode, thereby allowing much higher energy densities. Here we present a novel class of solid electrolytes with three-dimensional conducting pathways based on lithium-rich anti-perovslcites (LiRAP) with ionic conductivity of sigma > 10(-3) S/cm at room temperature and activation energy of 0.2-0.3 eV. As temperature approaches the melting point, the ionic conductivity of the anti-perovskites increases to advanced superionic conductivity of sigma > 10(-2) S/cm and beyond. The new crystalline materials can be readily manipulated via chemical, electronic, and structural means to boost ionic transport and serve as high-performance solid electrolytes for superionic Li+ conduction in electrochemistry applications.
引用
收藏
页码:15042 / 15047
页数:6
相关论文
共 18 条
  • [1] [Anonymous], APPL PHYS LETT
  • [2] High-Capacity Lithium-Air Cathodes
    Beattie, S. D.
    Manolescu, D. M.
    Blair, S. L.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (01) : A44 - A47
  • [3] SINGLE-CRYSTAL NEUTRON-DIFFRACTION STUDY OF AGI BETWEEN 23-DEGREES-C AND 300-DEGREES-C
    CAVA, RJ
    REIDINGER, F
    WUENSCH, BJ
    [J]. SOLID STATE COMMUNICATIONS, 1977, 24 (06) : 411 - 416
  • [4] Chandra S., 1981, SUPERIONIC SOLIDS PR
  • [5] Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/nmat3066, 10.1038/NMAT3066]
  • [6] Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy
    Kuhn, A.
    Narayanan, S.
    Spencer, L.
    Goward, G.
    Thangadurai, V.
    Wilkening, M.
    [J]. PHYSICAL REVIEW B, 2011, 83 (09)
  • [7] Li+ ion conductivity and diffusion mechanism in α-Li3N and β-Li3N
    Li, Wen
    Wu, Guotao
    Araujo, C. Moyses
    Scheicher, Ralph H.
    Blomqvist, Andreas
    Ahuja, Rajeev
    Xiong, Zhitao
    Feng, Yuanping
    Chen, Ping
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (10) : 1524 - 1530
  • [8] Megaw HD, 1973, Crystal structures: a working approach
  • [9] Fast lithium ion conduction in garnet-type Li7La3Zr2O12
    Murugan, Ramaswamy
    Thangadurai, Venkataraman
    Weppner, Werner
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (41) : 7778 - 7781
  • [10] SOLID ELECTROLYTE BEHAVIOR OF NAMGF3 - GEOPHYSICAL IMPLICATIONS
    OKEEFFE, M
    BOVIN, JO
    [J]. SCIENCE, 1979, 206 (4418) : 599 - 600