The Synergetic Effect of Lithium Bisoxalatodifluorophosphate and Fluoroethylene Carbonate on Dendrite Suppression for Fast Charging Lithium Metal Batteries

被引:69
作者
Shi, Pengcheng [1 ,2 ]
Liu, Fanfan [2 ]
Feng, YueZhan [3 ]
Zhou, Jiafeng [1 ,2 ]
Rui, Xianhong [1 ]
Yu, Yan [2 ,4 ,5 ]
机构
[1] Guangdong Univ Technol, Guangzhou Key Lab Low Dimens Mat & Energy Storage, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[3] Zhengzhou Univ, Key Lab Mat Proc & Mold, Minist Educ, Zhengzhou 450002, Peoples R China
[4] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[5] Chinese Acad Sci, Dalian Natl Lab Clean Energy DNL, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
fast charging; lithium bisoxalatodifluorophosphate; lithium dendrites; lithium metal batteries; solid electrolyte interphases; RECHARGEABLE BATTERIES; ELECTROLYTE; DIFLUOROPHOSPHATE; PERFORMANCE; DEPOSITION; STABILITY; PHOSPHATE;
D O I
10.1002/smll.202001989
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fluorinated solid-electrolyte interphase (SEI) derived from fluoroethylene carbonate (FEC) is particularly favored for dendrite suppression in lithium metal batteries because of the high Young's modulus (approximate to 64.9 Gpa) and low electronic conductivity (10(-31)S cm(-1)) of LiF. However, the transportation ability of Li(+)in this fluorinated SEI under high current densities is limited by the low ionic conductivity of LiF (approximate to 10(-12)S cm(-1)). Herein, by rational design, 0.1mlithium bisoxalatodifluorophosphate (LiDFBOP) is adopted to modify fluorinated SEI in FEC based electrolyte for fast charging lithium metal batteries. Benefiting from the synergetic effect of LiDFBOP and FEC, a fluorinated SEI rich in LiF and Li(x)PO(y)F(z)species can be yielded, which can further improve the stability and ionic conductivity of SEI for fast Li(+)transportation. Meanwhile, the average coulombic efficiency for Li plating/stripping is improved from 92.0% to 96.7%, thus promoting stable cycling of Li||Li symmetrical batteries with dendrite free morphologies, even at high current densities (3.0 mA cm(-2)) and high plating/stripping capacities (3.0 mAh cm(-2)). More attractively, in practical Li||LiNi(0.6)Co(0.2)Mn(0.2)O(2)batteries, the cycling life at 1C and rate capacities at 6C are also significantly improved. Therefore, the synergetic effect of LiDFBOP and FEC provides great potential for achieving advanced lithium metal batteries with fast charging ability.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Dendrite-Free Lithium Deposition via Flexible-Rigid Coupling Composite Network for LiNi0.5Mn1.5O4/Li Metal Batteries [J].
Chai, Jingchao ;
Chen, Bingbing ;
Xian, Fang ;
Wang, Peng ;
Du, Huiping ;
Zhang, Jianjun ;
Liu, Zhihong ;
Zhang, Huanrui ;
Dong, Shanmu ;
Zhou, Xinhong ;
Cui, Guanglei .
SMALL, 2018, 14 (37)
[2]   Armoring LiNi1/3Co1/3Mn1/3O2 Cathode with Reliable Fluorinated Organic-Inorganic Hybrid Interphase Layer toward Durable High Rate Battery [J].
Chen Yu ;
Zhao Weimin ;
Zhang Quanhai ;
Yang Guangzhi ;
Zheng Jianming ;
Tang Wei ;
Xu Qunjie ;
Lai Chunyan ;
Yang Junhe ;
Peng Chengxin .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (19)
[3]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[4]   A Highly Reversible, Dendrite-Free Lithium Metal Anode Enabled by a Lithium-Fluoride-Enriched Interphase [J].
Cui, Chunyu ;
Yang, Chongyin ;
Eidson, Nico ;
Chen, Ji ;
Han, Fudong ;
Chen, Long ;
Luo, Chao ;
Wang, Peng-Fei ;
Fan, Xiulin ;
Wang, Chunsheng .
ADVANCED MATERIALS, 2020, 32 (12)
[5]   A LiPO2F2/LiFSI dual-salt electrolyte enabled stable cycling of lithium metal batteries [J].
Dong, Ning ;
Yang, Guanghua ;
Luo, Hao ;
Xu, Hewei ;
Xia, Yonggao ;
Liu, Zhaoping .
JOURNAL OF POWER SOURCES, 2018, 400 :449-456
[6]   A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes [J].
Ensling, David ;
Stjerndahl, Marten ;
Nyten, Anton ;
Gustafsson, Torbjorn ;
Thomas, John O. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (01) :82-88
[7]   A LiPF6-electrolyte-solvothermal route for the synthesis of LiF/LixPFyOz-coated Li-rich cathode materials with enhanced cycling stability [J].
Fu, Chaochao ;
Wang, Jiayun ;
Wang, Jinfeng ;
Meng, Linglong ;
Zhang, Wenming ;
Li, Xiaoting ;
Li, Liping .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (40) :23149-23161
[8]   Interfacial Architectures Derived by Lithium Difluoro(bisoxalato) Phosphate for Lithium-Rich Cathodes with Superior Cycling Stability and Rate Capability [J].
Han, Jung-Gu ;
Park, Inbok ;
Cha, Jiho ;
Park, Suhyeon ;
Park, Sewon ;
Myeong, Seungjun ;
Cho, Woograe ;
Kim, Sung-Soo ;
Hong, Sung You ;
Cho, Jaephil ;
Choi, Nam-Soon .
CHEMELECTROCHEM, 2017, 4 (01) :56-65
[9]   Nitrofullerene, a C60-based Bifunctional Additive with Smoothing and Protecting Effects for Stable Lithium Metal Anode [J].
Jiang, Zhipeng ;
Zeng, Ziqi ;
Yang, Chengkai ;
Han, Zhilong ;
Hu, Wei ;
Lu, Jing ;
Xie, Jia .
NANO LETTERS, 2019, 19 (12) :8780-8786
[10]   Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes [J].
Jurng, Sunhyung ;
Brown, Zachary L. ;
Kim, Jiyeon ;
Lucht, Brett L. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (09) :2600-2608