SYMMETRY OF SOLUTIONS TO A CLASS OF MONGE-AMPERE EQUATIONS

被引:1
作者
Cui, Fan [1 ]
Jian, Huaiyu [1 ]
机构
[1] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
关键词
Symmetry solution; asymptotic behavior; Monge-Ampere equation; SEMILINEAR ELLIPTIC-EQUATIONS; GROUND-STATES; REGULARITY; EXISTENCE; BEHAVIOR;
D O I
10.3934/cpaa.2019060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the symmetry of solutions to a class of Monge-Ampere type equations from a few geometric problems. We use a new transform to analyze the asymptotic behavior of the solutions near the infinity. By this and a moving plane method, we prove the radially symmetry of the solutions.
引用
收藏
页码:1247 / 1259
页数:13
相关论文
共 30 条
[1]  
Berestycki H., 1988, Journal of Geometry and Physics, V5, P237, DOI DOI 10.1016/0393-0440(88)90006-X
[2]  
Berestycki H., 1991, Bol. Soc. Bras. Mat., V22, P1, DOI DOI 10.1007/BF01244896
[3]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[4]   Some remarks on singular solutions of nonlinear elliptic equations. I [J].
Caffarelli, Luis ;
Li, Yan Yan ;
Nirenberg, Louis .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 5 (02) :353-395
[5]  
Calabi E., 1958, Michigan Math. J., V5, P105, DOI 10.1307/mmj/1028998055
[6]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[7]  
Chen XQ, 2005, ADV NONLINEAR STUD, V5, P587
[8]   REGULARITY OF MONGE-AMPERE EQUATION DET (D2U/DXIDXJ) = F(X,U) [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :41-68
[9]  
Chou K., 1995, TOPOL METHOD NONL AN, V6, P151
[10]   The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry [J].
Chou, Kai-Seng ;
Wang, Xu-Jia .
ADVANCES IN MATHEMATICS, 2006, 205 (01) :33-83