Improved-UWB/LiDAR-SLAM Tightly Coupled Positioning System with NLOS Identification Using a LiDAR Point Cloud in GNSS-Denied Environments

被引:29
作者
Chen, Zhijian [1 ]
Xu, Aigong [1 ]
Sui, Xin [1 ]
Wang, Changqiang [1 ]
Wang, Siyu [1 ]
Gao, Jiaxin [1 ]
Shi, Zhengxu [1 ]
机构
[1] Liaoning Tech Univ, Sch Geomat, Fuxin 123000, Peoples R China
基金
中国国家自然科学基金;
关键词
GNSS-denied environments; positioning system; UWB; LiDAR-SLAM; NI; REKF; TC; UWB LOCALIZATION; MITIGATION;
D O I
10.3390/rs14061380
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reliable absolute positioning is indispensable in long-term positioning systems. Although simultaneous localization and mapping based on light detection and ranging (LiDAR-SLAM) is effective in global navigation satellite system (GNSS)-denied environments, it can provide only local positioning results, with error divergence over distance. Ultrawideband (UWB) technology is an effective alternative; however, non-line-of-sight (NLOS) propagation in complex indoor environments severely affects the precision of UWB positioning, and LiDAR-SLAM typically provides more robust results under such conditions. For robust and high-precision positioning, we propose an improved-UWB/LiDAR-SLAM tightly coupled (TC) integrated algorithm. This method is the first to combine a LiDAR point cloud map generated via LiDAR-SLAM with position information from UWB anchors to distinguish between line-of-sight (LOS) and NLOS measurements through obstacle detection and NLOS identification (NI) in real time. Additionally, to alleviate positioning error accumulation in long-term SLAM, an improved-UWB/LiDAR-SLAM TC positioning model is constructed using UWB LOS measurements and LiDAR-SLAM positioning information. Parameter solving using a robust extended Kalman filter (REKF) to suppress the effect of UWB gross errors improves the robustness and positioning performance of the integrated system. Experimental results show that the proposed NI method using the LiDAR point cloud can efficiently and accurately identify UWB NLOS errors to improve the performance of UWB ranging and positioning in real scenarios. The TC integrated method combining NI and REKF achieves better positioning effectiveness and robustness than other comparative methods and satisfactory control of sensor errors with a root-mean-square error of 0.094 m, realizing subdecimeter indoor positioning.
引用
收藏
页数:26
相关论文
共 45 条
[1]   The normal distributions transform: A new approach to laser scan matching [J].
Biber, P .
IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, :2743-2748
[2]  
Borras J, 1998, IEEE VTC P, P1583, DOI 10.1109/VETEC.1998.686556
[3]   A New Approach to 3D ICP Covariance Estimation [J].
Brossard, Martin ;
Bonnabel, Silvere ;
Barrau, Axel .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) :744-751
[4]   GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration [J].
Chang, Le ;
Niu, Xiaoji ;
Liu, Tianyi .
SENSORS, 2020, 20 (17) :1-18
[5]   Seamless navigation and mapping using an INS/GNSS/grid-based SLAM semi-tightly coupled integration scheme [J].
Chiang, K. W. ;
Tsai, G. J. ;
Chang, H. W. ;
Joly, C. ;
El-Sheimy, N. .
INFORMATION FUSION, 2019, 50 :181-196
[6]   Navigation Engine Design for Automated Driving Using INS/GNSS/3D LiDAR-SLAM and Integrity Assessment [J].
Chiang, Kai-Wei ;
Tsai, Guang-Je ;
Li, Yu-Hua ;
Li, You ;
El-Sheimy, Naser .
REMOTE SENSING, 2020, 12 (10)
[7]   Feature Selection for Real-Time NLOS Identification and Mitigation for Body-Mounted UWB Transceivers [J].
Ferreira, Andre G. ;
Fernandes, Duarte ;
Branco, Sergio ;
Catarino, Andre Paulo ;
Monteiro, Joao L. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[8]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[9]  
Hu H, 2020, IEEE Trans. Instrum. Meas., V70, P1, DOI DOI 10.1109/TIM.2020.2987049
[10]   UWB NLOS/LOS Classification Using Deep Learning Method [J].
Jiang, Changhui ;
Shen, Jichun ;
Chen, Shuai ;
Chen, Yuwei ;
Liu, Di ;
Bo, Yuming .
IEEE COMMUNICATIONS LETTERS, 2020, 24 (10) :2226-2230