Different levels of serum microRNAs in prostate cancer and benign prostatic hyperplasia: evaluation of potential diagnostic and prognostic role

被引:86
作者
Cochetti, Giovanni [1 ]
Poli, Giulia [2 ]
Guelfi, Gabriella [3 ]
Boni, Andrea [1 ]
Egidi, Maria Giulia [1 ]
Mearini, Ettore [1 ]
机构
[1] Univ Perugia, Inst Urol Androl Surg & Minimally Invas Tech, Dept Surg & Biomed Sci, I-06156 Perugia, Italy
[2] Univ Perugia, Dept Expt Med, Sect Terni, Perugia, Italy
[3] Univ Perugia, Dept Vet Med, Perugia, Italy
关键词
miRNA; prostate cancer; serum; PSA; benign prostatic hyperplasia; ANDROGEN RECEPTOR; TUMOR-SUPPRESSOR; CIRCULATING MICRORNAS; EXPRESSION SIGNATURE; CELL PROLIFERATION; CLUSTER; EZH2; MYC; BIOMARKERS; CARCINOMA;
D O I
10.2147/OTT.S119027
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Introduction: Diagnosis of prostate cancer (PCa) is based on prostate biopsy that is performed when prostate specific antigen (PSA) is persistently altered over time and/or abnormal digital rectal examination is found. Serum PSA levels increase in both PCa and benign prostatic hyperplasia, leading to an increased number of unnecessary biopsies. There is an urgent need to unravel PCa-specific molecular signatures. Patients and methods: This study aimed at characterizing a panel of circulating micro-RNAs (miRNAs) that could distinguish PCa from benign prostatic hyperplasia in a population of age-matched patients with increased PSA levels. Both miRNAs targeting genes involved in PCa onset and miRNAs whose role in PCa has been highlighted in other studies were included. For this purpose, let-7c, let-7e, let-7i, miR-26a-5p, miR-26b-5p, miR-24-3p, miR-23b-3p, miR-27b- 3p, miR-106a-5p, miR-20b-5p, miR-18b-5p, miR-19b-2-5p, miR-363-3p, miR-497, miR-195, miR-25-3p, miR-30c-5p, miR-622, miR-874-3p, miR-346 and miR-940 were assayed through real-time PCR in 64 patients with PCa and compared with 60 patients with benign prostatic hyperplasia. The ability of miRNAs to predict the stage of disease was also analyzed. Results: Let-7c, let-7e, let-7i, miR-26a-5p, miR-26b-5p, miR-18b-5p and miR-25-3p were able to discriminate patients with PCa from those harboring benign prostatic hyperplasia, both presenting altered PSA levels (>3 ng/mL). MiR-25-3p and miR-18b-5p showed the highest sensitivity and specificity to predict PCa, respectively. The combination of these two miRNAs improved the overall sensitivity. A correlation between pathological Gleason score and miRNA expression levels was reported; miR-363-3p, miR-26a-5p, miR-26b-5p, miR-106a-5p, miR-18b-5p, miR-25-3p and let-7i decreased in expression concomitantly with an increase in malignancy. Conclusion: This study confirms serum miRNAs to be reliable candidates for the development of minimally invasive biomarkers for the diagnosis and prognosis of PCa, particularly in those cases where PSA acts as a flawed marker.
引用
收藏
页码:7545 / 7553
页数:9
相关论文
共 66 条
[1]   20-year outcomes following conservative management of clinically localized prostate cancer [J].
Albertsen, PC ;
Hanley, JA ;
Fine, J .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2005, 293 (17) :2095-2101
[2]   Genomic profiling of MicroRNA and messenger RNA reveals deregulated MicroRNA expression in prostate cancer [J].
Ambs, Stefan ;
Prueitt, Robyn L. ;
Yi, Ming ;
Hudson, Robert S. ;
Howe, Tiffany M. ;
Petrocca, Fabio ;
Wallace, Tiffany A. ;
Liu, Chang-Gong ;
Volinia, Stefano ;
Calin, George A. ;
Yfantis, Harris G. ;
Stephens, Robert M. ;
Croce, Carlo M. .
CANCER RESEARCH, 2008, 68 (15) :6162-6170
[3]   Regression of Castrate-Recurrent Prostate Cancer by a Small-Molecule Inhibitor of the Amino-Terminus Domain of the Androgen Receptor [J].
Andersen, Raymond J. ;
Mawji, Nasrin R. ;
Wang, Jun ;
Wang, Gang ;
Haile, Simon ;
Myung, Jae-Kyung ;
Watt, Kate ;
Tam, Teresa ;
Yang, Yu Chi ;
Banuelos, Carmen A. ;
Williams, David E. ;
McEwan, Iain J. ;
Wang, Yuzhou ;
Sadar, Marianne D. .
CANCER CELL, 2010, 17 (06) :535-546
[4]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[5]   Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites [J].
Betel, Doron ;
Koppal, Anjali ;
Agius, Phaedra ;
Sander, Chris ;
Leslie, Christina .
GENOME BIOLOGY, 2010, 11 (08)
[6]   The role of let-7 in cell differentiation and cancer [J].
Boyerinas, Benjamin ;
Park, Sun-Mi ;
Hau, Annika ;
Murmann, Andrea E. ;
Peter, Marcus E. .
ENDOCRINE-RELATED CANCER, 2010, 17 (01) :F19-F36
[7]   Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers [J].
Calin, GA ;
Sevignani, C ;
Dan Dumitru, C ;
Hyslop, T ;
Noch, E ;
Yendamuri, S ;
Shimizu, M ;
Rattan, S ;
Bullrich, F ;
Negrini, M ;
Croce, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (09) :2999-3004
[8]   MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1α/HIF-1β [J].
Cao, Paul ;
Deng, Zhiyong ;
Wan, Meimei ;
Huang, Weiwei ;
Cramer, Scott D. ;
Xu, Jianfeng ;
Lei, Ming ;
Sui, Guangchao .
MOLECULAR CANCER, 2010, 9
[9]   A miRNA expression signature that separates between normal and malignant prostate tissues [J].
Carlsson, Jessica ;
Davidsson, Sabina ;
Helenius, Gisela ;
Karlsson, Mats ;
Lubovac, Zelmina ;
Andren, Ove ;
Olsson, Bjorn ;
Klinga-Levan, Karin .
CANCER CELL INTERNATIONAL, 2011, 11
[10]   Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases [J].
Chen, Xi ;
Ba, Yi ;
Ma, Lijia ;
Cai, Xing ;
Yin, Yuan ;
Wang, Kehui ;
Guo, Jigang ;
Zhang, Yujing ;
Chen, Jiangning ;
Guo, Xing ;
Li, Qibin ;
Li, Xiaoying ;
Wang, Wenjing ;
Zhang, Yan ;
Wang, Jin ;
Jiang, Xueyuan ;
Xiang, Yang ;
Xu, Chen ;
Zheng, Pingping ;
Zhang, Juanbin ;
Li, Ruiqiang ;
Zhang, Hongjie ;
Shang, Xiaobin ;
Gong, Ting ;
Ning, Guang ;
Wang, Jun ;
Zen, Ke ;
Zhang, Junfeng ;
Zhang, Chen-Yu .
CELL RESEARCH, 2008, 18 (10) :997-1006