Exact solutions for nonlinear partial differential equation: a new approach

被引:102
作者
Bai, CL [1 ]
机构
[1] Liaocheng Teachers Coll, Dept Commun Engn, Liaocheng 252059, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear evolution equation; hyperbola function method; traveling wave solution;
D O I
10.1016/S0375-9601(01)00522-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A method to construct the new exact solutions of the PDE is presented, which is named hyperbola function method. Some nonlinear equations are chosen to illustrate the method and the new exact solutions are obtained. (C) 2001 Elsevier Science BN. All rights reserved.
引用
收藏
页码:191 / 195
页数:5
相关论文
共 17 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]  
Bai CL, 2000, COMMUN THEOR PHYS, V34, P729
[3]   SIMILARITY REDUCTIONS FROM EXTENDED PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1991, 53 (01) :59-70
[4]  
Dodd R. K., 1982, Solitons and nonlinear wave equations
[5]  
FAN EG, 1997, ACTA PHYS SINICA, V46, P1244
[6]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[7]  
Gu C.H., 1990, Soliton Theory and its Application
[8]   EXACT N-SOLITON SOLUTIONS OF WAVE-EQUATION OF LONG WAVES IN SHALLOW-WATER AND IN NONLINEAR LATTICES [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :810-814
[9]   EXACT-SOLUTIONS TO THE KDV-BURGERS EQUATION [J].
JEFFREY, A ;
MOHAMAD, MNB .
WAVE MOTION, 1991, 14 (04) :369-375
[10]   SOLITARY WAVE SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
MALFLIET, W .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (07) :650-654