A Novel Computational Technique for Impulsive Fractional Differential Equations

被引:8
作者
Ma, Changyou [1 ]
机构
[1] Neijiang Normal Univ, Coll Math & Informat Sci, Neijiang 641100, Peoples R China
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 02期
关键词
fractional derivative; Adomian method; computational technique; ADOMIAN DECOMPOSITION; DERIVATIVES; STABILITY;
D O I
10.3390/sym11020216
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A computational technique for impulsive fractional differential equations is proposed in this paper. Adomian decomposition method plays an efficient role for approximate analytical solutions for ordinary or fractional calculus. Semi-analytical method is proposed by use of the Adomian polynomials. The method successively updates the initial values and gives the numerical solutions on different impulsive intervals. As one of the numerical examples, an impulsive fractional logistic differential equation is given to illustrate the method.
引用
收藏
页数:8
相关论文
共 29 条
[1]  
Adomian G., 1994, SOLVING FRONTIER PRO
[2]   A SURVEY OF LYAPUNOV FUNCTIONS, STABILITY AND IMPULSIVE CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Agarwal, Ravi ;
Hristova, Snezhana ;
O'Regan, Donal .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) :290-318
[3]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[4]  
Baleanu D., 2012, FRACTIONAL CALCULUS, V3, DOI 10.1142/8180
[5]   Sinc-Fractional Operator on Shannon Wavelet Space [J].
Cattani, Carlo .
FRONTIERS IN PHYSICS, 2018, 6
[6]   Adomian decomposition: a tool for solving a system of fractional differential equations [J].
Daftardar-Gejji, V ;
Jafari, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 301 (02) :508-518
[7]  
Diethelm K., 2010, LECT NOTES MATH
[8]   The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations [J].
Duan, Jun-Sheng ;
Chaolu, Temuer ;
Rach, Randolph ;
Lu, Lei .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) :728-736
[9]   Convenient analytic recurrence algorithms for the Adomian polynomials [J].
Duan, Jun-Sheng .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (13) :6337-6348
[10]   An efficient algorithm for the multivariable Adomian polynomials [J].
Duan, Jun-Sheng .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) :2456-2467