Adaptive Slicing Method of the Spatiotemporal Event Stream Obtained from a Dynamic Vision Sensor

被引:6
作者
Zhang, Yisa [1 ,2 ]
Zhao, Yuchen [1 ]
Lv, Hengyi [1 ]
Feng, Yang [1 ]
Liu, Hailong [1 ]
Han, Chengshan [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
dynamic vision sensor; spatiotemporal event stream; adaptive slicing; POSE ESTIMATION;
D O I
10.3390/s22072614
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The dynamic vision sensor (DVS) measures asynchronously change of brightness per pixel, then outputs an asynchronous and discrete stream of spatiotemporal event information that encodes the time, location, and sign of brightness changes. The dynamic vision sensor has outstanding properties compared to sensors of traditional cameras, with very high dynamic range, high temporal resolution, low power consumption, and does not suffer from motion blur. Hence, dynamic vision sensors have considerable potential for computer vision in scenarios that are challenging for traditional cameras. However, the spatiotemporal event stream has low visualization and is incompatible with existing image processing algorithms. In order to solve this problem, this paper proposes a new adaptive slicing method for the spatiotemporal event stream. The resulting slices of the spatiotemporal event stream contain complete object information, with no motion blur. The slices can be processed either with event-based algorithms or by constructing slices into virtual frames and processing them with traditional image processing algorithms. We tested our slicing method using public as well as our own data sets. The difference between the object information entropy of the slice and the ideal object information entropy is less than 1%.
引用
收藏
页数:20
相关论文
共 25 条
[1]   Asynchronous Corner Detection and Tracking for Event Cameras in Real Time [J].
Alzugaray, Ignacio ;
Chli, Margarita .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :3177-3184
[2]   Dynamic Vision Sensors for Human Activity Recognition [J].
Baby, Stefanie Anna ;
Vinod, Bimal ;
Chinni, Chaitanya ;
Mitra, Kaushik .
PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, :316-321
[3]   A 240 x 180 130 dB 3 μs Latency Global Shutter Spatiotemporal Vision Sensor [J].
Brandli, Christian ;
Berner, Raphael ;
Yang, Minhao ;
Liu, Shih-Chii ;
Delbruck, Tobi .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (10) :2333-2341
[4]   Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for Event-based Object Tracking [J].
Chen, Haosheng ;
Wu, Qiangqiang ;
Liang, Yanjie ;
Gao, Xinbo ;
Wang, Hanzi .
PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, :473-481
[5]   Star Tracking using an Event Camera [J].
Chin, Tat-Jun ;
Bagchi, Samya ;
Eriksson, Anders ;
van Schaik, Andre .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, :1646-1655
[6]   ESPEE: Event-Based Sensor Pose Estimation Using an Extended Kalman Filter [J].
Colonnier, Fabien ;
Della Vedova, Luca ;
Orchard, Garrick .
SENSORS, 2021, 21 (23)
[7]  
Delbruck T., 2016, P C SOL STAT DEV RES
[8]   Event Encryption for Neuromorphic Vision Sensors: Framework, Algorithm, and Evaluation [J].
Du, Bowen ;
Li, Weiqi ;
Wang, Zeju ;
Xu, Manxin ;
Gao, Tianchen ;
Li, Jiajie ;
Wen, Hongkai .
SENSORS, 2021, 21 (13)
[9]   Event Density Based Denoising Method for Dynamic Vision Sensor [J].
Feng, Yang ;
Lv, Hengyi ;
Liu, Hailong ;
Zhang, Yisa ;
Xiao, Yuyao ;
Han, Chengshan .
APPLIED SCIENCES-BASEL, 2020, 10 (06)
[10]   Event-Based Vision: A Survey [J].
Gallego, Guillermo ;
Delbruck, Tobi ;
Orchard, Garrick Michael ;
Bartolozzi, Chiara ;
Taba, Brian ;
Censi, Andrea ;
Leutenegger, Stefan ;
Davison, Andrew ;
Conradt, Jorg ;
Daniilidis, Kostas ;
Scaramuzza, Davide .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (01) :154-180