High-throughput microfluidics to control and measure signaling dynamics in single yeast cells

被引:73
作者
Hansen, Anders S. [1 ,2 ,3 ]
Hao, Nan [4 ]
O'Shea, Erin K. [1 ,2 ,3 ,5 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Northwest Lab, Howard Hughes Med Inst, Cambridge, MA 02138 USA
[3] Harvard Univ, Northwest Lab, Fac Arts & Sci Ctr Syst Biol, Cambridge, MA 02138 USA
[4] Univ Calif San Diego, Div Biol Sci, Mol Biol Sect, La Jolla, CA 92093 USA
[5] Harvard Univ, Northwest Lab, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
GENE-EXPRESSION; PROTEIN-KINASE; SACCHAROMYCES-CEREVISIAE; BUDDING YEAST; NUCLEAR-LOCALIZATION; DISSECTION PLATFORM; FLUORESCENT PROTEIN; TRANSCRIPTION; PATHWAY; STRESS;
D O I
10.1038/nprot.2015.079
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microfluidics coupled to quantitative time-lapse fluorescence microscopy is transforming our ability to control, measure and understand signaling dynamics in single living cells. Here we describe a pipeline that incorporates multiplexed microfluidic cell culture, automated programmable fluid handling for cell perturbation, quantitative time-lapse microscopy and computational analysis of time-lapse movies. We illustrate how this setup can be used to control the nuclear localization of the budding yeast transcription factor Msn2. By using this protocol, we generate oscillations of Msn2 localization and measure the dynamic gene expression response of individual genes in single cells. The protocol allows a single researcher to perform up to 20 different experiments in a single day, while collecting data for thousands of single cells. Compared with other protocols, the present protocol is relatively easy to adopt and of higher throughput. The protocol can be widely used to control and monitor single-cell signaling dynamics in other signal transduction systems in microorganisms.
引用
收藏
页码:1181 / 1197
页数:17
相关论文
共 79 条
[51]   Fluorescence Imaging of Cellular Metabolites with RNA [J].
Paige, Jeremy S. ;
Nguyen-Duc, Thinh ;
Song, Wenjiao ;
Jaffrey, Samie R. .
SCIENCE, 2012, 335 (6073) :1194-1194
[52]   Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses [J].
Petrenko, Natalia ;
Chereji, Razvan V. ;
McClean, Megan N. ;
Morozov, Alexandre V. ;
Broach, James R. .
MOLECULAR BIOLOGY OF THE CELL, 2013, 24 (12) :2045-2057
[53]   Rapid and tunable post-translational coupling of genetic circuits [J].
Prindle, Arthur ;
Selimkhanov, Jangir ;
Li, Howard ;
Razinkov, Ivan ;
Tsimring, Lev S. ;
Hasty, Jeff .
NATURE, 2014, 508 (7496) :387-+
[54]   Encoding and Decoding Cellular Information through Signaling Dynamics [J].
Purvis, Jeremy E. ;
Lahav, Galit .
CELL, 2013, 152 (05) :945-956
[55]   Soft lithography for micro- and nanoscale patterning [J].
Qin, Dong ;
Xia, Younan ;
Whitesides, George M. .
NATURE PROTOCOLS, 2010, 5 (03) :491-502
[56]   Chemical Biology Strategies for Posttranslational Control of Protein Function [J].
Rakhit, Rishi ;
Navarro, Raul ;
Wandless, Thomas J. .
CHEMISTRY & BIOLOGY, 2014, 21 (09) :1238-1252
[57]   Tracking lineages of single cells in lines using a microfluidic device [J].
Rowat, Amy C. ;
Bird, James C. ;
Agresti, Jeremy J. ;
Rando, Oliver J. ;
Weitz, David A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (43) :18149-18154
[58]   Microfluidics device for single cell gene expression analysis in Saccharomyces cerevisiae [J].
Ryley, James ;
Pereira-Smith, Olivia M. .
YEAST, 2006, 23 (14-15) :1065-1073
[59]   The present and future role of microfluidics in biomedical research [J].
Sackmann, Eric K. ;
Fulton, Anna L. ;
Beebe, David J. .
NATURE, 2014, 507 (7491) :181-189
[60]   Genetic Determinants and Cellular Constraints in Noisy Gene Expression [J].
Sanchez, Alvaro ;
Golding, Ido .
SCIENCE, 2013, 342 (6163) :1188-1193