METRIC ENTROPY FOR SET-VALUED MAPS

被引:5
作者
Vivas, Kendry J. [1 ]
Sirvent, Victor F. [1 ]
机构
[1] Univ Catolica Norte, Dept Matemat, Av Angamos 0610, Antofagasta, Chile
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2022年 / 27卷 / 11期
关键词
Metric entropy; set-valued map; measurable selection; topological en-tropy; variational principle; TOPOLOGICAL-ENTROPY;
D O I
10.3934/dcdsb.2022010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we define a notion of metric entropy for an invariant measure associated to a set-valued map F on a compact metric space X. Besides, we describe its main properties and prove the Half Variational Principle, which relates the metric entropy with the notion of topological entropy given in [13] for this class of maps.
引用
收藏
页码:6589 / 6604
页数:16
相关论文
共 18 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
[Anonymous], 1956, Uspehi Mat. Nauk (N.S.)
[3]  
Aubin J.-P., 1991, ANN POL MATH, V54, P85
[4]  
Aubin J.-P., 1990, Set-Valued Analysis, DOI 10.1007/978-0-8176-4848-0
[5]  
Boltzmann L., 1877, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Classe. Abt. II, V76, P373
[7]  
Carrasco-Olivera D., 2020, J MATH SCI NY, V178, P31
[8]   TOPOLOGICAL ENTROPY FOR SET-VALUED MAPS [J].
Carrasco-Olivera, Dante ;
Metzger Alvan, Roger ;
Morales Rojas, Carlos Arnoldo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (10) :3461-3474
[9]  
Clausius R., 1865, Ann. Phys. Chem, VCXXV, P353, DOI DOI 10.1002/ANDP.18652010702
[10]  
Dinaburg E.I., 1971, Izv. Akad. Nauk SSSR Ser. Mat, V35, P13, DOI DOI 10.1070/IM1971V005N02ABEH001050