ANALYSIS OF A NEW SPACE-TIME PARALLEL MULTIGRID ALGORITHM FOR PARABOLIC PROBLEMS

被引:100
作者
Gander, Martin J. [1 ]
Neumueller, Martin [2 ]
机构
[1] Univ Geneva, Sect Math, 2-4 Rue Lievre,CP 64, CH-1211 Geneva, Switzerland
[2] Johannes Kepler Univ Linz, Inst Computat Math, Altenberger Str 69, A-4040 Linz, Austria
关键词
space-time parallel methods; multigrid in space-time; DG-discretizations; strong and weak scalability; parabolic problems; PARTIAL-DIFFERENTIAL-EQUATIONS; WAVE-FORM RELAXATION; PARAREAL ALGORITHM; EFFICIENT PARALLEL; HEAT-EQUATION; STABILITY;
D O I
10.1137/15M1046605
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze a new space-time parallel multigrid method for parabolic equations. The method is based on arbitrarily high order discontinuous Galerkin discretizations in time and a finite element discretization in space. The key ingredient of the new algorithm is a block Jacobi smoother. We present a detailed convergence analysis when the algorithm is applied to the heat equation and determine asymptotically optimal smoothing parameters, a precise criterion for semi-coarsening in time or full coarsening, and give an asymptotic two grid contraction factor estimate. We then explain how to implement the new multigrid algorithm in parallel and show with numerical experiments its excellent strong and weak scalability properties.
引用
收藏
页码:A2173 / A2208
页数:36
相关论文
共 47 条
[31]  
Kwok F., 2014, DOMAIN DECOMPOSITION
[32]   A "parareal" in time discretization of PDE's [J].
Lions, JL ;
Maday, Y ;
Turinici, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (07) :661-668
[33]   MULTIGRID DYNAMIC ITERATION FOR PARABOLIC EQUATIONS [J].
LUBICH, C ;
OSTERMANN, A .
BIT NUMERICAL MATHEMATICS, 1987, 27 (02) :216-234
[34]   A parareal in time procedure for the control of partial differential equations [J].
Maday, Y ;
Turinici, G .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (04) :387-392
[35]  
Maday Y, 2005, LECT NOTES COMP SCI, V40, P441
[36]  
Mandal B., 2014, DOMAIN DECOMPOSITION
[37]  
McDonald E. G., 2014, SIMPLE PROPOSAL PARA
[38]  
Speck R., 2012, Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, P92
[39]   A multi-level spectral deferred correction method [J].
Speck, Robert ;
Ruprecht, Daniel ;
Emmett, Matthew ;
Minion, Michael ;
Bolten, Matthias ;
Krause, Rolf .
BIT NUMERICAL MATHEMATICS, 2015, 55 (03) :843-867
[40]  
Staff GA, 2005, LECT NOTES COMP SCI, V40, P449