ANALYSIS OF A NEW SPACE-TIME PARALLEL MULTIGRID ALGORITHM FOR PARABOLIC PROBLEMS

被引:100
作者
Gander, Martin J. [1 ]
Neumueller, Martin [2 ]
机构
[1] Univ Geneva, Sect Math, 2-4 Rue Lievre,CP 64, CH-1211 Geneva, Switzerland
[2] Johannes Kepler Univ Linz, Inst Computat Math, Altenberger Str 69, A-4040 Linz, Austria
关键词
space-time parallel methods; multigrid in space-time; DG-discretizations; strong and weak scalability; parabolic problems; PARTIAL-DIFFERENTIAL-EQUATIONS; WAVE-FORM RELAXATION; PARAREAL ALGORITHM; EFFICIENT PARALLEL; HEAT-EQUATION; STABILITY;
D O I
10.1137/15M1046605
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present and analyze a new space-time parallel multigrid method for parabolic equations. The method is based on arbitrarily high order discontinuous Galerkin discretizations in time and a finite element discretization in space. The key ingredient of the new algorithm is a block Jacobi smoother. We present a detailed convergence analysis when the algorithm is applied to the heat equation and determine asymptotically optimal smoothing parameters, a precise criterion for semi-coarsening in time or full coarsening, and give an asymptotic two grid contraction factor estimate. We then explain how to implement the new multigrid algorithm in parallel and show with numerical experiments its excellent strong and weak scalability properties.
引用
收藏
页码:A2173 / A2208
页数:36
相关论文
共 47 条
[1]  
[Anonymous], 2010, SPRINGER SER COMPUT
[2]  
[Anonymous], 2006, NUMERICAL SOLUTION P, DOI DOI 10.1007/3-540-31619-1_
[3]  
Bal G, 2005, LECT NOTES COMP SCI, V40, P425
[4]   A HOMOGRAPHIC BEST APPROXIMATION PROBLEM WITH APPLICATION TO OPTIMIZED SCHWARZ WAVEFORM RELAXATION [J].
Bennequin, D. ;
Gander, M. J. ;
Halpern, L. .
MATHEMATICS OF COMPUTATION, 2009, 78 (265) :185-223
[5]   Analysis of tensor product multigrid [J].
Börm, S ;
Hiptmair, R .
NUMERICAL ALGORITHMS, 2001, 26 (03) :219-234
[6]  
Chipman F., 1971, INFORMATIONSBEHANDLI, V11, P384
[7]  
EHLE BL, 1969, THESIS U WATERLOO ON
[8]   TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS [J].
Emmett, Matthew ;
Minion, Michael L. .
COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2012, 7 (01) :105-132
[9]  
Falgout RD, 2002, LECT NOTES COMPUT SC, V2331, P632
[10]   Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems [J].
Gander, M. J. ;
Halpern, L. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) :666-697