Acute type refinements of tetrahedral partitions of polyhedral domains

被引:44
作者
Korotov, S
Krízek, M
机构
[1] Univ Erlangen Nurnberg, Inst Appl Math, D-91058 Erlangen, Germany
[2] Acad Sci, Math Inst, CZ-11567 Prague 1, Czech Republic
关键词
acute type condition; tetrahedral partitions; polyhedral domain; discrete maximum principle; maximum angle condition; red; green; yellow elements;
D O I
10.1137/S003614290037040X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new technique to perform refinements on acute type tetrahedral partitions of a polyhedral domain, provided that the center of the circumscribed sphere around each tetrahedron belongs to the tetrahedron. The resulting family of partitions is of acute type; thus, all the tetrahedra satisfy the maximum angle condition. Both these properties are highly desirable in finite element analysis.
引用
收藏
页码:724 / 733
页数:10
相关论文
共 26 条
[1]   NONOBTUSE TRIANGULATION OF POLYGONS [J].
BAKER, BS ;
GROSSE, E ;
RAFFERTY, CS .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (02) :147-168
[2]  
BANK RE, 1994, FRONT APPL MATH, V15
[3]  
Bansch E., 1991, Impact of Computing in Science and Engineering, V3, P181, DOI 10.1016/0899-8248(91)90006-G
[5]   Tetrahedral grid refinement [J].
Bey, J .
COMPUTING, 1995, 55 (04) :355-378
[6]  
Ciarlet P. G., 1973, Computer Methods in Applied Mechanics and Engineering, V2, P17, DOI 10.1016/0045-7825(73)90019-4
[7]  
Ciarlet Philippe G, 1970, Aequationes Mathematicae, V4, P338
[8]  
Feistauer M., 1997, NUMER METH PART D E, V13, P163
[9]  
Gerver J.L., 1984, GEOMETRIAE DEDICATA, V16, P93
[10]   AN APPROACH TO REFINING 3-DIMENSIONAL TETRAHEDRAL MESHES BASED ON DELAUNAY TRANSFORMATIONS [J].
GOLIAS, NA ;
TSIBOUKIS, TD .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (05) :793-812