A green, simple and cost-effective approach to synthesize high quality graphene by electrochemical exfoliation via process optimization

被引:37
作者
Chuang, Chung-Hsien [1 ]
Su, Ching-Yuan [2 ,7 ]
Hsu, Kuei-Ting [3 ]
Chen, Chia-Hsuan [2 ]
Huang, Chia-Hung [4 ,5 ]
Chu, Chi-Wen [4 ,6 ]
Liu, Wei-Ren [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Chem Engn, Taoyuan, Taiwan
[2] Natl Cent Univ, Dept Mech Engn, Taipei, Taiwan
[3] Army Acad ROC, Dept Chem Engn, Taoyuan, Taiwan
[4] Met Ind Res & Dev Ctr, Kaohsiung, Taiwan
[5] Natl Cheng Kung Univ, Dept Mat Sci & Engn, Tainan 70101, Taiwan
[6] Natl Univ Tainan, Dept Green Energy, Tainan, Taiwan
[7] Natl Cent Univ, Grad Inst Energy Engn, Taoyuan, Taiwan
关键词
FILMS; OXIDE; TRANSPARENT; GRAPHITE; FLAKES;
D O I
10.1039/c5ra07710a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This research focuses on manufacturing graphene nanosheets (GNSs) using an electrochemical exfoliation method. Through tuning the synthetic parameters, such as the composition of electrolytes, concentration of the electrolyte, KOH/H2SO4 ratio, and applied voltage and current density, the relationships between the material's characteristics and synthetic parameters were studied. The physical and chemical properties of as-synthesized GNSs were systematically studied using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), Raman spectroscopy (Raman), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Among the synthetic parameters, current density plays a very important role in this exfoliation process. Under the optimal current density of 0.11 A cm(-2), we successfully synthesized high quality GNSs with a D/G ratio of 0.061, which is far superior to the reported values of other groups. The results indicate that a green, simple and cost-effective exfoliation process has been successfully developed in this study.
引用
收藏
页码:54762 / 54768
页数:7
相关论文
共 26 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   Electrical Probing of Submicroliter Liquid Using Graphene Strip Transistors Built on a Nanopipette [J].
Chen, Chang-Hsiao ;
Lin, Cheng-Te ;
Lee, Yi-Hsien ;
Liu, Keng-Ku ;
Su, Ching-Yuan ;
Zhang, Wenjing ;
Li, Lain-Jong .
SMALL, 2012, 8 (01) :43-46
[6]   Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations [J].
Cooper, Adam J. ;
Wilson, Neil R. ;
Kinloch, Ian A. ;
Dryfe, Robert A. W. .
CARBON, 2014, 66 :340-350
[7]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[8]  
Greinke R. A., 2002, US Pat., Patent No. [416815 B2, 416815]
[9]  
Hummers W. S., 1957, US Pat., Patent No. [798 (2):878, 7982878]
[10]   Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review [J].
Jang, B. Z. ;
Zhamu, A. .
JOURNAL OF MATERIALS SCIENCE, 2008, 43 (15) :5092-5101