Self-Supported FeCo2S4 Nanotube Arrays as Binder-Free Cathodes for Lithium-Sulfur Batteries

被引:83
作者
Guo, Bingshu [1 ,2 ]
Bandaru, Sateesh [3 ]
Dai, Chunlong [1 ,2 ]
Chen, Hao [1 ,2 ]
Zhang, Youquan [1 ,2 ]
Xu, Juju [1 ,2 ]
Bao, Shujuan [1 ,2 ]
Chen, Mingyang [3 ]
Xu, Maowen [1 ,2 ]
机构
[1] Southwest Univ, Fac Mat & Energy, Inst Clean Energy & Adv Mat, Chongqing 400715, Peoples R China
[2] Chongqing Key Lab Adv Mat & Technol Clean Energie, Chongqing 400715, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
基金
中国国家自然科学基金;
关键词
polar nanotube arrays; catalytic effect; chemical adsorption; binder-free; lithium-sulfur batteries; LONG-LIFE; NI FOAM; POLYSULFIDE MEDIATOR; HOLLOW SPHERES; PERFORMANCE; HOST; ELECTRODES; SHELL; STABILITY; NANOBOXES;
D O I
10.1021/acsami.8b16948
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Inhibiting the shuttle effect, buffering the volume expansion, and improving the utilization of sulfur have been the three strategic points for developing a high-performance lithium-sulfur (Li-S) battery. Driven by this background, a flexible sulfur host material composed of FeCo2S4 nanotube arrays grown on the surface of carbon cloth is designed for a binder-free cathode of the Li-S battery through two-step hydrothermal method. Among the rest, the interconnected carbon fiber skeleton of the composite electrode ensures the basic electrical conductivity, whereas the FeCo2S4 nanotube arrays not only boost the electron and electrolyte transfer but also inhibit the dissolution of polysulfides because of their strong chemical adsorption. Meanwhile, the hollow structures of these arrays can provide a large inner space to accommodate the volume expansion of sulfur. More significantly, the developed composite electrode also reveals a catalytic action for accelerating the reaction kinetic of the Li-S battery. As a result, the FeCo2S4/CC@S electrode delivers a high discharge capacity of 1384 mA h g(-1) at the current density of 0.1 C and simultaneously exhibits a stable Coulombic efficiency of about 98%.
引用
收藏
页码:43707 / 43715
页数:9
相关论文
共 54 条
[1]  
[Anonymous], 2016, ADV ENERGY MATER
[2]  
[Anonymous], 2016, ADV ENERGY MATER
[3]   New insights into the limiting parameters of the Li/S rechargeable cell [J].
Barchasz, Celine ;
Lepretre, Jean-Claude ;
Alloin, Fannie ;
Patoux, Sebastien .
JOURNAL OF POWER SOURCES, 2012, 199 :322-330
[4]   Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co3S4 Nanoboxes for High-Rate and Heat-Resistant Lithium-Sulfur Batteries [J].
Chen, Tao ;
Zhang, Zewen ;
Cheng, Baorui ;
Chen, Renpeng ;
Hu, Yi ;
Ma, Lianbo ;
Zhu, Guoyin ;
Liu, Jie ;
Jin, Zhong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (36) :12710-12715
[5]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[6]   Honeycomb-Like Spherical Cathode Host Constructed from Hollow Metallic and Polar Co9S8 Tubules for Advanced Lithium-Sulfur Batteries [J].
Dai, Chunlong ;
Lim, Jin-Myoung ;
Wang, Minqiang ;
Hu, Linyu ;
Chen, Yuming ;
Chen, Zhaoyang ;
Chen, Hao ;
Bao, Shu-Juan ;
Shen, Bolei ;
Li, Yi ;
Henkelman, Graeme ;
Xu, Maowen .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (14)
[7]   Uniform α-Ni(OH)2 hollow spheres constructed from ultrathin nanosheets as efficient polysulfide mediator for long-term lithium-sulfur batteries [J].
Dai, Chunlong ;
Hu, Linyu ;
Wang, Min-Qiang ;
Chen, Yuming ;
Han, Jin ;
Jiang, Jian ;
Zhang, Yan ;
Shen, Bolei ;
Niu, Yubin ;
Bao, Shu-Juan ;
Xu, Maowen .
ENERGY STORAGE MATERIALS, 2017, 8 :202-208
[8]   Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors [J].
Deng, Cuifen ;
Yang, Lishan ;
Yang, Chunming ;
Shen, Ping ;
Zhao, Liping ;
Wang, Zhiyu ;
Wang, Chunhui ;
Li, Junhua ;
Qian, Dong .
APPLIED SURFACE SCIENCE, 2018, 428 :148-153
[9]   Co4N Nanosheet Assembled Mesoporous Sphere as a Matrix for Ultrahigh Sulfur Content Lithium-Sulfur Batteries [J].
Deng, Ding-Rong ;
Xue, Fei ;
Jia, Yue-Ju ;
Ye, Jian-Chuan ;
Bai, Cheng-Dong ;
Zheng, Ming-Sen ;
Dong, Quan-Feng .
ACS NANO, 2017, 11 (06) :6031-6039
[10]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509