Periodic standing waves in the focusing nonlinear Schrodinger equation: Rogue waves and modulation instability

被引:66
作者
Chen, Jinbing [1 ]
Pelinovsky, Dmitry E. [2 ,3 ]
White, Robert E. [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[2] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
[3] Inst Appl Phys RAS, Nizhnii Novgorod 603950, Russia
基金
中国国家自然科学基金; 俄罗斯科学基金会;
关键词
Periodic standing waves; Modulation instability and rogue waves; FINITE-GAP METHOD; INTEGRABLE TURBULENCE; NLS; SOLITONS;
D O I
10.1016/j.physd.2020.132378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present exact solutions for rogue waves arising on the background of periodic standing waves in the focusing nonlinear Schrodinger equation. The exact solutions are obtained by characterizing the Lax spectrum related to the periodic standing waves and by using the one-fold Darboux transformation. The magnification factor of the rogue waves is computed in the closed analytical form. We relate the rogue wave solutions to the modulation instability of the background of the periodic standing waves. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 32 条
[1]   Integrable turbulence generated from modulational instability of cnoidal waves [J].
Agafontsev, D. S. ;
Zakharov, V. E. .
NONLINEARITY, 2016, 29 (11) :3551-3578
[2]   Integrable turbulence and formation of rogue waves [J].
Agafontsev, D. S. ;
Zakharov, V. E. .
NONLINEARITY, 2015, 28 (08) :2791-2821
[3]   Rogue waves and rational solutions of the nonlinear Schroumldinger equation [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. .
PHYSICAL REVIEW E, 2009, 80 (02)
[4]  
AKHMEDIEV NN, 1985, ZH EKSP TEOR FIZ+, V89, P1542
[5]   Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrodinger Equation [J].
Bertola, M. ;
Tovbis, A. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 354 (02) :525-547
[6]   Rogue waves in multiphase solutions of the focusing nonlinear Schrodinger equation [J].
Bertola, Marco ;
El, Gennady A. ;
Tovbis, Alexander .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2194)
[7]  
Bilman D., 2018, ARXIV180600545
[8]   Large-Order Asymptotics for Multiple-Pole Solitons of the Focusing Nonlinear Schrodinger Equation [J].
Bilman, Deniz ;
Buckingham, Robert .
JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (05) :2185-2229
[9]   A Robust Inverse Scattering Transform for the Focusing Nonlinear Schrodinger Equation [J].
Bilman, Deniz ;
Miller, Peter D. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (08) :1722-1805
[10]  
Biondini G, 2018, SIAM REV, V60, P888, DOI [10.1137/17M112765, 10.1137/17M1112765]