Uncertainty principle with quantum Fisher information

被引:16
作者
Andai, Attila [1 ]
机构
[1] RIKEN, BSI, Amari Res Unit, Wako, Saitama 3510198, Japan
基金
日本学术振兴会; 匈牙利科学研究基金会;
关键词
D O I
10.1063/1.2830429
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we prove a lower bound for the determinant of the covariance matrix of quantum mechanical observables, which was conjectured by Gibilisco and has the interpretation of uncertainty. The lower bound is given in terms of the commutator of the state and the observables and quantum Fisher information (generated by an operator monotone function). (c) 2008 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 22 条
[1]  
BECKENBACH E, 1961, UNEQUALITIES
[2]   SOME APPLICATIONS OF MEANS OF CONVEX BODIES [J].
FIREY, WJ .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (01) :53-&
[3]  
GIBILISCO P, 2007, ARXIVMATHPH07071231V
[4]   Uncertainty principle and quantum fisher information. II. [J].
Gibilisco, Paolo ;
Imparato, Daniele ;
Isola, Tommaso .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
[5]   A volume inequality for quantum fisher information and the uncertainty principle [J].
Gibilisco, Paolo ;
Imparato, Daniele ;
Isola, Tommaso .
JOURNAL OF STATISTICAL PHYSICS, 2008, 130 (03) :545-559
[6]   Uncertainty principle and quantum Fisher information [J].
Gibilisco, Paolo ;
Isola, Tommaso .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2007, 59 (01) :147-159
[7]  
HANSEN F, ARXIVMATHPH0607049V5
[8]  
Heisenberg W., 1927, Z. Phys, V43, P172, DOI [DOI 10.1007/BF01397280, 10.1007/BF01397280]
[9]  
Hiai F., 1996, STUD SCI MATH HUNG, V32, P235
[10]  
Horn R. A., 1986, Matrix analysis