Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

被引:242
作者
Piazza, L. [1 ]
Lummen, T. T. A. [1 ]
Quinonez, E. [2 ]
Murooka, Y. [1 ]
Reed, B. W. [3 ]
Barwick, B. [2 ]
Carbone, F. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, ICMP, Lab Ultrafast Microscopy & Elect Scattering, CH-1015 Lausanne, Switzerland
[2] Trinity Coll, Dept Phys, Hartford, CT 06106 USA
[3] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94551 USA
基金
瑞士国家科学基金会;
关键词
ELECTRON-MICROSCOPY; SURFACE-PLASMONS; RESONANCES; POLARITONS; NANOPHOTONICS; TRANSMISSION; SCATTERING; NANOWIRES; GRAPHENE; PHOTONS;
D O I
10.1038/ncomms7407
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave-particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. This methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Plasmon-assisted transmission of entangled photons [J].
Altewischer, E ;
van Exter, MP ;
Woerdman, JP .
NATURE, 2002, 418 (6895) :304-306
[2]   Plasmon electron energy-gain spectroscopy [J].
Asenjo-Garcia, A. ;
Garcia de Abajo, F. J. .
NEW JOURNAL OF PHYSICS, 2013, 15
[3]   DISPERSION-RELATIONS FOR NON-RADIATIVE SURFACE PLASMONS ON CYLINDERS [J].
ASHLEY, JC ;
EMERSON, LC .
SURFACE SCIENCE, 1974, 41 (02) :615-618
[4]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[5]   Photon-induced near-field electron microscopy [J].
Barwick, Brett ;
Flannigan, David J. ;
Zewail, Ahmed H. .
NATURE, 2009, 462 (7275) :902-906
[6]   Strong Plasmon Reflection at Nanometer-Size Gaps in Monolayer Graphene on SiC [J].
Chen, Jianing ;
Nesterov, Maxim L. ;
Nikitin, Alexey Yu ;
Thongrattanasiri, Sukosin ;
Alonso-Gonzalez, Pablo ;
Slipchenko, Tetiana M. ;
Speck, Florian ;
Ostler, Markus ;
Seyller, Thomas ;
Crassee, Iris ;
Koppens, Frank H. L. ;
Martin-Moreno, Luis ;
Garcia de Abajo, F. Javier ;
Kuzmenko, Alexey B. ;
Hillenbrand, Rainer .
NANO LETTERS, 2013, 13 (12) :6210-6215
[7]   Breakthrough lost in coin toss? [J].
Cho, Adrian .
SCIENCE, 2014, 346 (6205) :22-23
[8]   Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons [J].
Christensen, Johan ;
Manjavacas, Alejandro ;
Thongrattanasiri, Sukosin ;
Koppens, Frank H. L. ;
Javier Garcia de Abajo, F. .
ACS NANO, 2012, 6 (01) :431-440
[9]   Magnetic field modulation of intense surface plasmon polaritons [J].
Clavero, C. ;
Yang, K. ;
Skuza, J. R. ;
Lukaszew, R. A. .
OPTICS EXPRESS, 2010, 18 (08) :7743-7752
[10]   Excitation dependent Fano-like interference effects in plasmonic silver nanorods [J].
Collins, Sean M. ;
Nicoletti, Olivia ;
Rossouw, David ;
Ostasevicius, Tomas ;
Midgley, Paul A. .
PHYSICAL REVIEW B, 2014, 90 (15)