A Liouville type theorem for the stationary compressible Navier-Stokes equations

被引:4
作者
Liu, Pan [1 ]
机构
[1] Yulin Univ, Sch Math & Stat, Yulin 719000, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Liouville type theorem; Compressible Navier-Stokes equations; Stationary system; REGULARITY; POSEDNESS; FLOWS; MHD;
D O I
10.1007/s13324-022-00736-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper is dedicated to the Liouville type problem for the three-dimensional stationary barotropic compressible Navier-Stokes equations. We show that the velocity is trivial under some additional assumptions stated in terms of Lebesgue and BMO-1 spaces.
引用
收藏
页数:10
相关论文
共 20 条
[11]   Regularity of solutions to the Navier-Stokes equations for compressible barotropic flows on a polygon [J].
Kweon, JR ;
Kellogg, RB .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (01) :35-64
[12]   ON SOME LIOUVILLE TYPE THEOREMS FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Li, Dong ;
Yu, Xinwei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) :4719-4733
[13]   Notes on Liouville type theorems for the stationary compressible Navier-Stokes equations [J].
Li, Zhouyu ;
Niu, Pengcheng .
APPLIED MATHEMATICS LETTERS, 2021, 114
[14]  
Lions P.L, 1996, COMPRESSIBLE MODELS, V3
[15]   Some Liouville-type theorems for the stationary density-dependent Navier-Stokes equations [J].
Liu, Pan ;
Liu, Genqian .
JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (01)
[16]  
Novotny A., 2004, OXFORD LECT SERIES M
[17]   Liouville type theorem for stationary Navier-Stokes equations [J].
Seregin, G. .
NONLINEARITY, 2016, 29 (08) :2191-2195
[18]  
Stein E., 1993, Monographs in Harmonic Analysis, V43
[19]   Liouville-type theorem for the steady compressible Hall-MHD system [J].
Zeng, Yong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (01) :205-211
[20]   A Liouville theorem for the compressible Navier-Stokes equations [J].
Zhong, Xin .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (13) :5091-5095