On the use of third-order models with fourth-order regularization for unconstrained optimization

被引:15
作者
Birgin, E. G. [1 ]
Gardenghi, J. L. [1 ]
Martinez, J. M. [2 ]
Santos, S. A. [2 ]
机构
[1] Univ Sao Paulo, Inst Math & Stat, Dept Comp Sci, Rua Matao 1010,Cidade Univ, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Estadual Campinas, Inst Math Stat & Sci Comp, Dept Appl Math, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Unconstrained minimization; Third-order models; Regularization; Complexity; TRUST-REGION METHOD; CONSTRAINED OPTIMIZATION; CUBIC-REGULARIZATION; NEWTON METHOD; NONCONVEX; COMPLEXITY; PACKING; DESCENT;
D O I
10.1007/s11590-019-01395-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In a recent paper (Birgin et al. in Math Program 163(1):359-368, 2017), it was shown that, for the smooth unconstrained optimization problem, worst-case evaluation complexity O(epsilon-(p+1)/p) may be obtained by means of algorithms that employ sequential approximate minimizations of p-th order Taylor models plus (p+1)-th order regularization terms. The aforementioned result, which assumes Lipschitz continuity of the p-th partial derivatives, generalizes the case p=2, known since 2006, which has already motivated efficient implementations. The present paper addresses the issue of defining a reliable algorithm for the case p=3With that purpose, we propose a specific algorithm and we show numerical experiments.
引用
收藏
页码:815 / 838
页数:24
相关论文
共 33 条
[1]   Augmented Lagrangian methods under the constant positive linear dependence constraint qualification [J].
Andreani, R. ;
Birgin, E. G. ;
Martinez, J. M. ;
Schuverdt, M. L. .
MATHEMATICAL PROGRAMMING, 2008, 111 (1-2) :5-32
[2]   Practical active-set Euclidian trust-region method with spectral projected gradients for bound-constrained minimization [J].
Andretta, M ;
Birgin, EG ;
Martínez, JM .
OPTIMIZATION, 2005, 54 (03) :305-325
[3]   REMARK ON ALGORITHM-566 [J].
AVERBUKH, VZ ;
FIGUEROA, S ;
SCHLICK, T .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1994, 20 (03) :282-285
[4]  
Bertsekas D. P., 1999, Nonlinear Programming
[5]  
Birgin E., 2001, Topics in Numerical Analysis, V15, P49, DOI DOI 10.1007/978-3-7091-6217-05
[6]   Minimizing the object dimensions in circle and sphere packing problems [J].
Birgin, E. G. ;
Sobral, F. N. C. .
COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (07) :2357-2375
[7]   Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization [J].
Birgin, E. G. ;
Martinez, J. M. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 39 (01) :1-16
[8]  
Birgin EG, 2014, FUND ALGORITHMS, P1, DOI 10.1137/1.9781611973365
[9]   THE USE OF QUADRATIC REGULARIZATION WITH A CUBIC DESCENT CONDITION FOR UNCONSTRAINED OPTIMIZATION [J].
Birgin, E. G. ;
Martinez, J. M. .
SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (02) :1049-1074
[10]   Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models [J].
Birgin, E. G. ;
Gardenghi, J. L. ;
Martinez, J. M. ;
Santos, S. A. ;
Toint, Ph. L. .
MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) :359-368