A METRIC CHARACTERIZATION OF CARNOT GROUPS

被引:0
作者
Le Donne, Enrico [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
关键词
Carnot groups; subRiemannian geometry; CARATHEODORY SPACE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a short axiomatic introduction to Carnot groups and their subRiemannian and subFinsler geometry. We explain how such spaces can be metrically described as exactly those proper geodesic spaces that admit dilations and are isometrically homogeneous.
引用
收藏
页码:845 / 849
页数:5
相关论文
共 15 条
[1]  
Bellaiche A., 1996, SUBRIEMANNIAN GEOMET, V144, P1
[2]  
Berestovskii Valerii, 2004, IZV VYSSH UCHEBN ZAV, V48, P3
[3]  
BERESTOVSKII VN, 1989, SIBER MATH J, V29, P887
[4]  
Buliga Marius, 2011, COMMUN MATH ANAL, V11, P70
[5]  
Buyalo Sergei, 2012, PREPRINT
[6]  
Drutu C., 2011, LECT GEOMETRIC UNPUB
[7]   Transitive Bi-Lipschitz Group Actions and Bi-Lipschitz Parameterizations [J].
Freeman, David M. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (01) :311-331
[8]   GROUPS WITHOUT SMALL SUBGROUPS [J].
GLEASON, AM .
ANNALS OF MATHEMATICS, 1952, 56 (02) :193-212
[9]  
Gromov Mikhael, 1996, Progr. Math., V144, P79
[10]   METRIC SPACES WITH UNIQUE TANGENTS [J].
Le Donne, Enrico .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (02) :683-694