Steady-state parameter sensitivity in stochastic modeling via trajectory reweighting

被引:18
|
作者
Warren, Patrick B. [1 ]
Allen, Rosalind J. [2 ]
机构
[1] Unilever R&D Port Sunlight, Wirral CH63 3JW, Merseyside, England
[2] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland
来源
JOURNAL OF CHEMICAL PHYSICS | 2012年 / 136卷 / 10期
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
SIMULATION; SYSTEMS; LAMBDA; SWITCH;
D O I
10.1063/1.3690092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Parameter sensitivity analysis is a powerful tool in the building and analysis of biochemical network models. For stochastic simulations, parameter sensitivity analysis can be computationally expensive, requiring multiple simulations for perturbed values of the parameters. Here, we use trajectory reweighting to derive a method for computing sensitivity coefficients in stochastic simulations without explicitly perturbing the parameter values, avoiding the need for repeated simulations. The method allows the simultaneous computation of multiple sensitivity coefficients. Our approach recovers results originally obtained by application of the Girsanov measure transform in the general theory of stochastic processes [A. Plyasunov and A. P. Arkin, J. Comput. Phys. 221, 724 (2007)]. We build on these results to show how the method can be used to compute steady-state sensitivity coefficients from a single simulation run, and we present various efficiency improvements. For models of biochemical signaling networks, the method has a particularly simple implementation. We demonstrate its application to a signaling network showing stochastic focussing and to a bistable genetic switch, and present exact results for models with linear propensity functions. (C) 2012 American Institute of Physics.[http://dx.doi.org/10.1063/1.3690092]
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Microscopic reweighting for nonequilibrium steady-state dynamics
    Bause, Marius
    Wittenstein, Timon
    Kremer, Kurt
    Bereau, Tristan
    PHYSICAL REVIEW E, 2019, 100 (06)
  • [2] Stochastic Modeling of the Steady-State Variability in Isometric Force
    Stitt, Joseph R.
    Newell, Karl M.
    MOTOR CONTROL, 2009, 13 (03) : 310 - 330
  • [4] An Integrated Algorithm for Stochastic Steady-State System Optimization and Parameter Estimation
    Han, C.
    Ellis, J. E.
    Chen, S.
    Roberts, P. D.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1986, 3 (04) : 323 - 335
  • [5] Reweighting trajectory segments into steady state without knowledge of the sampling distribution
    Kania, Sagar
    Zuckerman, Daniel M.
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 429A - 429A
  • [6] A finite state projection method for steady-state sensitivity analysis of stochastic reaction networks
    Durrenberger, Patrik
    Gupta, Ankit
    Khammash, Mustafa
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (13):
  • [7] Bayesian Parameter Estimation for Stochastic Reaction Networks from Steady-State Observations
    Gupta, Ankit
    Khammash, Mustafa
    Sanguinetti, Guido
    COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY (CMSB 2019), 2019, 11773 : 342 - 346
  • [8] Priorities in Thurstone Scaling and Steady-State Probabilities in Markov Stochastic Modeling
    Lipovetsky, Stan
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2013, 12 (01) : 65 - 77
  • [9] STEADY-STATE OF A STOCHASTIC HARVESTING MODEL
    REED, WJ
    MATHEMATICAL BIOSCIENCES, 1978, 41 (3-4) : 273 - 307
  • [10] STEADY-STATE SENSITIVITY OF A VACUUM BOLOMETER
    AMDUR, I
    GLICK, CF
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1945, 16 (05): : 117 - 124