Dynamic Solution of the HJB Equation and the Optimal Control of Nonlinear Systems

被引:9
作者
Sassano, M. [1 ]
Astolfi, A. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
来源
49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2010年
关键词
D O I
10.1109/CDC.2010.5716990
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimal control problems are often solved exploiting the solution of the so-called Hamilton-Jacobi-Bellman (HJB) partial differential equation, which may be, however, hard or impossible to solve in specific examples. Herein we circumvent this issue determining a dynamic solution of the HJB equation, without solving any partial differential equation. The methodology yields a dynamic control law that minimizes a cost functional defined as the sum of the original cost and an additional cost.
引用
收藏
页码:3271 / 3276
页数:6
相关论文
共 12 条
[1]   A note on the augmented Hessian when the reduced Hessian is semidefinite [J].
Anstreicher, KM ;
Wright, MH .
SIAM JOURNAL ON OPTIMIZATION, 2000, 11 (01) :243-253
[2]  
Bardi M., 1997, Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations
[3]   Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation [J].
Beard, RW ;
Saridis, GN ;
Wen, JT .
AUTOMATICA, 1997, 33 (12) :2159-2177
[4]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[5]   Inverse optimality in robust stabilization [J].
Freeman, RA ;
Kokotovic, PV .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (04) :1365-1391
[6]  
Krener AJ, 1998, IEEE DECIS CONTR P, P3081, DOI 10.1109/CDC.1998.757969
[7]   OPTIMAL REGULATION OF NONLINEAR DYNAMICAL SYSTEMS [J].
LUKES, DL .
SIAM JOURNAL ON CONTROL, 1969, 7 (01) :75-&
[8]   A curse-of-dimensionality-free numerical method for solution of certain HJB PDEs [J].
McEneaney, William M. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (04) :1239-1276
[9]   Remarks regarding the gap between continuous, Lipschitz, and differentiable storage functions for dissipation inequalities appearing in H∞ control [J].
Rosier, L ;
Sontag, ED .
SYSTEMS & CONTROL LETTERS, 2000, 41 (04) :237-249
[10]  
Sassano M., 2010, P 8 IFAC S NONL CONT, P3081