Atmospheric pressure glow discharge for CO2 conversion: Model-based exploration of the optimum reactor configuration

被引:66
作者
Trenchev, G. [1 ]
Nikiforov, A. [2 ]
Wang, W. [1 ]
Kolev, St. [3 ]
Bogaerts, A. [1 ]
机构
[1] Univ Antwerp, Res Grp PLASMANT, Dept Chem, Univ Pl 1, B-2610 Antwerp, Belgium
[2] Univ Ghent, Dept Appl Phys, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
[3] Sofia Univ, Fac Phys, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
关键词
Plasma; CO2; conversion; Atmospheric; Glow discharge; Vortex flow; Modeling; PLASMA;
D O I
10.1016/j.cej.2019.01.091
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We investigate the performance of an atmospheric pressure glow discharge (APGD) reactor for CO2 conversion in three different configurations, through experiments and simulations. The first (basic) configuration utilizes the well-known pin-to-plate design, which offers a limited conversion. The second configuration improves the reactor performance by employing a vortex-flow generator. The third, "confined" configuration is a complete redesign of the reactor, which encloses the discharge in a limited volume, significantly surpassing the conversion rate of the other two designs. The plasma properties are investigated using an advanced plasma model.
引用
收藏
页码:830 / 841
页数:12
相关论文
共 44 条
[1]   Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study [J].
Aerts, Robby ;
Somers, Wesley ;
Bogaerts, Annemie .
CHEMSUSCHEM, 2015, 8 (04) :702-716
[2]   On basic processes sustaining constricted glow discharge in longitudinal N2 flow at atmospheric pressure [J].
Akishev, Yu ;
Grushin, M. ;
Karalnik, V. ;
Petryakov, A. ;
Trushkin, N. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (21)
[3]   Modeling of CO2 Splitting in a Microwave Plasma: How to Improve the Conversion and Energy Efficiency [J].
Berthelot, Antonin ;
Bogaerts, Annemie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (15) :8236-8251
[4]   Modeling of plasma-based CO2 conversion: lumping of the vibrational levels [J].
Berthelot, Antonin ;
Bogaerts, Annemie .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (04)
[5]   Characterization of an atmospheric pressure dc plasma jet [J].
Bibinov, N. ;
Dudek, D. ;
Awakowicz, P. ;
Engemann, J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (23) :7372-7378
[6]   Plasma Technology: An Emerging Technology for Energy Storage [J].
Bogaerts, Annemie ;
Neyts, Erik C. .
ACS ENERGY LETTERS, 2018, 3 (04) :1013-1027
[7]   Plasma based CO2 and CH4 conversion: A modeling perspective [J].
Bogaerts, Annemie ;
De Bie, Christophe ;
Snoeckx, Ramses ;
Kozak, Tomas .
PLASMA PROCESSES AND POLYMERS, 2017, 14 (06)
[8]   Modeling plasma-based CO2 conversion: crucial role of the dissociation cross section [J].
Bogaerts, Annemie ;
Wang, Weizong ;
Berthelot, Antonin ;
Guerra, Vasco .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (05)
[9]   Plasma-based conversion of CO2: current status and future challenges [J].
Bogaerts, Annemie ;
Kozak, Tomas ;
van Laer, Koen ;
Snoeckx, Ramses .
FARADAY DISCUSSIONS, 2015, 183 :217-232
[10]   Plasma-driven dissociation of CO2 for fuel synthesis [J].
Bongers, Waldo ;
Bouwmeester, Henny ;
Wolf, Bram ;
Peeters, Floran ;
Welzel, Stefan ;
van den Bekerom, Dirk ;
den Harder, Niek ;
Goede, Adelbert ;
Graswinckel, Martijn ;
Groen, Pieter Willem ;
Kopecki, Jochen ;
Leins, Martina ;
van Rooij, Gerard ;
Schulz, Andreas ;
Walker, Matthias ;
van de Sanden, Richard .
PLASMA PROCESSES AND POLYMERS, 2017, 14 (06)