The paper introduces a novel approach to computational homogenization by bridging the scales from microscale to macroscale. Whenever the microstructure is in an equilibrium state, the macrostructure needs to be in equilibrium, too. The novel approach is based on the concept of representative volume elements, stating that an assemblage of representative elements should be able to resemble the macrostructure. The resulting key assumption is the continuity of the appropriate kinematic fields across both scales. This assumption motivates the following idea. In contrast to existing approaches, where mostly constitutive quantities are homogenized, the balance equations, that drive the considered field quantities, are homogenized. The approach is applied to the fully coupled partial differential equations of thermomechanics solved by the finite element (FE) method. A novel consistent finite homogenization element is given with respect to discretized residual formulations and linearization terms. The presented FE has no restrictions regarding the thermomechanical constitutive laws that are characterizing the microstructure. A first verification of the presented approach is carried out against semi-analytical and reference solutions within the range of one-dimensional small strain thermoelasticity. Further verification is obtained by a comparison to the classical FE method and its different types of boundary conditions within a finite deformation setting of purely mechanical problems. Furthermore, the efficiency of the novel approach is investigated and compared. Finally, structural examples are shown in order to demonstrate the applicability of the presented homogenization framework in case of finite thermo-inelasticity at different length scales.