SEMI-SUPERVISED CLASSIFICATION OF HYPERSPECTRAL DATA BASED ON GENERATIVE ADVERSARIAL NETWORKS AND NEIGHBORHOOD MAJORITY VOTING

被引:0
作者
Zhan, Ying [1 ,2 ]
Wu, Kang [1 ]
Liu, Wei [1 ]
Qin, Jin [1 ]
Yang, Zhaoying [1 ]
Medjadba, Yasmine [1 ]
Wang, Guian [3 ]
Yu, Xianchuan [1 ]
机构
[1] Beijing Normal Univ, Coll Informat Sci & Technol, Beijing 100875, Peoples R China
[2] Nanyang Inst Technol, Sch Software, Nanyang 473000, Peoples R China
[3] Beijing Normal Univ, Beijing 100875, Peoples R China
来源
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2018年
关键词
Hyperspectral images classification; semi-supervised learning (SSL); generative adversarial networks (GAN); deep learning; spectral-spatial classification; IMAGE CLASSIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
How to classify hyperspectral images using few training samples is an important and challenging problem because the collection of the samples is difficult and expensive. Because semi-supervised approaches can utilize information contained in the unlabeled samples and labeled samples, it is a suitable choice. A novel semi-supervised spectral-spatial classification method for hyperspectral data based on generative adversarial network (GAN) is proposed in this paper. First, we use a custom one-dimensional GAN to train the hyperspectral data to obtain spectral features. After using a new small convolutional neural network (CNN) to classify the spectral features, we use a new classification method based on a majority voting strategy further to improve the classification result. The performance of our method is evaluated on ROSIS image data, and the results show that the proposed method can acquire satisfactory results when compared with traditional methods using a few of labeled samples.
引用
收藏
页码:5756 / 5759
页数:4
相关论文
共 13 条
[1]  
[Anonymous], 2015, ARXIV PREPRINT ARXIV
[2]  
[Anonymous], 2006, BOOK REV IEEE T NEUR
[3]   Semi-supervised Hyperspectral Image Classification with Graphs [J].
Bandos, Tatyana V. ;
Zhou, Dengyong ;
Camps-Valls, Gustavo .
2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, :3883-+
[4]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[5]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[6]   Generative Adversarial Networks-Based Semi-Supervised Learning for Hyperspectral Image Classification [J].
He, Zhi ;
Liu, Han ;
Wang, Yiwen ;
Hu, Jie .
REMOTE SENSING, 2017, 9 (10)
[7]   Semisupervised Hyperspectral Image Classification Using Soft Sparse Multinomial Logistic Regression [J].
Li, Jun ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) :318-322
[8]   Hyperspectral Image Classification Using Deep Pixel-Pair Features [J].
Li, Wei ;
Wu, Guodong ;
Zhang, Fan ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2017, 55 (02) :844-853
[9]   A Composite Semisupervised SVM for Classification of Hyperspectral Images [J].
Marconcini, Mattia ;
Camps-Valls, Gustavo ;
Bruzzone, Lorenzo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (02) :234-238
[10]   Recent advances in techniques for hyperspectral image processing [J].
Plaza, Antonio ;
Benediktsson, Jon Atli ;
Boardman, Joseph W. ;
Brazile, Jason ;
Bruzzone, Lorenzo ;
Camps-Valls, Gustavo ;
Chanussot, Jocelyn ;
Fauvel, Mathieu ;
Gamba, Paolo ;
Gualtieri, Anthony ;
Marconcini, Mattia ;
Tilton, James C. ;
Trianni, Giovanna .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 :S110-S122