LAU-Net: Latitude Adaptive Upscaling Network for Omnidirectional Image Super-resolution

被引:43
作者
Deng, Xin [1 ]
Wang, Hao [2 ]
Xu, Mai [2 ]
Guo, Yichen [2 ]
Song, Yuhang [3 ]
Yang, Li [2 ]
机构
[1] Beihang Univ, Sch Cyber Sci & Technol, Beijing, Peoples R China
[2] Beihang Univ, Sch Elect & Informat Engn, Beijing, Peoples R China
[3] Univ Oxford, Dept Comp Sci, Oxford, England
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
基金
北京市自然科学基金;
关键词
D O I
10.1109/CVPR46437.2021.00907
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The omnidirectional images (ODIs) are usually at low-resolution, due to the constraints of collection, storage and transmission. The traditional two-dimensional (2D) image super-resolution methods are not effective for spherical ODIs, because ODIs tend to have non-uniformly distributed pixel density and varying texture complexity across latitudes. In this work, we propose a novel latitude adaptive upscaling network (LAU-Net) for ODI super-resolution, which allows pixels at different latitudes to adopt distinct upscaling factors. Specifically, we introduce a Laplacian multi-level separation architecture to split an ODI into different latitude bands, and hierarchically upscale them with different factors. In addition, we propose a deep reinforcement learning scheme with a latitude adaptive reward, in order to automatically select optimal upscaling factors for different latitude bands. To the best of our knowledge, LAU-Net is the first attempt to consider the latitude difference for ODI super-resolution. Extensive results demonstrate that our LAU-Net significantly advances the super-resolution performance for ODIs.
引用
收藏
页码:9185 / 9194
页数:10
相关论文
共 48 条
[21]  
Kingma DP, 2014, ADV NEUR IN, V27
[22]   Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution [J].
Lai, Wei-Sheng ;
Huang, Jia-Bin ;
Ahuja, Narendra ;
Yang, Ming-Hsuan .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5835-5843
[23]   Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network [J].
Ledig, Christian ;
Theis, Lucas ;
Huszar, Ferenc ;
Caballero, Jose ;
Cunningham, Andrew ;
Acosta, Alejandro ;
Aitken, Andrew ;
Tejani, Alykhan ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :105-114
[24]   Automated Ice-Water Classification Using Dual Polarization SAR Satellite Imagery [J].
Leigh, Steven ;
Wang, Zhijie ;
Clausi, David A. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (09) :5529-5539
[25]   Multi-scale Residual Network for Image Super-Resolution [J].
Li, Juncheng ;
Fang, Faming ;
Mei, Kangfu ;
Zhang, Guixu .
COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 :527-542
[26]   Enhanced Deep Residual Networks for Single Image Super-Resolution [J].
Lim, Bee ;
Son, Sanghyun ;
Kim, Heewon ;
Nah, Seungjun ;
Lee, Kyoung Mu .
2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, :1132-1140
[27]   Maintaining Natural Image Statistics with the Contextual Loss [J].
Mechrez, Roey ;
Talmi, Itamar ;
Shama, Firas ;
Zelnik-Manor, Lihi .
COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 :427-443
[28]  
Nagahara H, 2000, IEEE IND ELEC, P2559, DOI 10.1109/IECON.2000.972401
[29]  
Ozcinar Cagri, 2019, IEEE INT WORKSH MULT, P1
[30]  
Park SC, 2003, IEEE SIGNAL PROC MAG, V20, P21, DOI 10.1109/MSP.2003.1203207