pH-Responsive Catalytic Janus Motors with Autonomous Navigation and Cargo-Release Functions

被引:21
作者
Archer, Richard A. [1 ]
Howse, Johnathan R. [1 ]
Fujii, Syuji [2 ,3 ]
Kawashima, Hisato [4 ]
Buxton, Gavin A. [5 ]
Ebbens, Stephen J. [1 ]
机构
[1] Univ Sheffield, Dept Chem & Biol Engn, Sheffield S1 3JD, S Yorkshire, England
[2] Osaka Inst Technol, Fac Engn, Dept Appl Chem, Asahi Ku, 5-16-1 Omiya, Osaka 5358585, Japan
[3] Osaka Inst Technol, Nanomat Microdevices Res Ctr, Asahi Ku, 5-16-1 Omiya, Osaka 5358585, Japan
[4] Osaka Inst Technol, Grad Sch Engn, Div Appl Chem, Asahi Ku, 5-16-1 Omiya, Osaka 5358585, Japan
[5] Robert Morris Univ, Dept Sci, Coraopolis, PA 15108 USA
基金
英国工程与自然科学研究理事会;
关键词
colloids; drug delivery; microfluidics; stimuli-responsive materials; MOTION; CHIP;
D O I
10.1002/adfm.202000324
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fabrication of multifunctional polymeric Janus colloids that display catalytically driven propulsion, change their size in response to local variations in pH, and vary cargo release rate is demonstrated. Systematic investigation of the colloidal trajectories reveals that in acidic environments the propulsion velocity reduces dramatically due to colloid swelling. This leads to a chemotaxis-like accumulation for ensembles of these responsive particles in low-pH regions. In synergy with this chemically defined accumulation, the colloids also show an enhancement in the release rate of an encapsulated cargo molecule. Together, these effects result in a strategy to harness catalytic propulsion for combined autonomous transport and cargo release directed by a chemical stimulus, displaying a greater than 30 times local cargo-accumulation enhancement. Lactic acid can be used as the stimulus for this behavior, an acid produced by some tumors, suggesting possible eventual utility as a drug-delivery method. Applications for microfluidic transport are also discussed.
引用
收藏
页数:9
相关论文
共 35 条
[1]  
[Anonymous], 2007, PHYS REV LETT
[2]   A Pickering Emulsion Route to Swimming Active Janus Colloids [J].
Archer, Richard J. ;
Parnell, Andrew J. ;
Campbell, Andrew I. ;
Howse, Jonathan R. ;
Ebbens, Stephen J. .
ADVANCED SCIENCE, 2018, 5 (02)
[3]   Micromachine-Enabled Capture and Isolation of Cancer Cells in Complex Media [J].
Balasubramanian, Shankar ;
Kagan, Daniel ;
Hu, Che-Ming Jack ;
Campuzano, Susana ;
Lobo-Castanon, M. Jesus ;
Lim, Nicole ;
Kang, Dae Y. ;
Zimmerman, Maria ;
Zhang, Liangfang ;
Wang, Joseph .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (18) :4161-4164
[4]   Chemotactic Behavior of Catalytic Motors in Microfluidic Channels [J].
Baraban, Larysa ;
Harazim, Stefan M. ;
Sanchez, Samuel ;
Schmidt, Oliver G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (21) :5552-5556
[5]   Catalytic Janus Motors on Microfluidic Chip: Deterministic Motion for Targeted Cargo Delivery [J].
Baraban, Larysa ;
Makarov, Denys ;
Streubel, Robert ;
Moench, Ingolf ;
Grimm, Daniel ;
Sanchez, Samuel ;
Schmidt, Oliver G. .
ACS NANO, 2012, 6 (04) :3383-3389
[6]   CHEMOTAXIS IN BACTERIA [J].
BERG, HC .
ANNUAL REVIEW OF BIOPHYSICS AND BIOENGINEERING, 1975, 4 :119-136
[7]   Ionic effects in self-propelled Pt-coated Janus swimmers [J].
Brown, Aidan ;
Poon, Wilson .
SOFT MATTER, 2014, 10 (22) :4016-4027
[8]   Synthetic nanomotors in microchannel networks: Directional microchip motion and controlled manipulation of cargo [J].
Burdick, Jared ;
Laocharoensuk, Rawiwan ;
Wheat, Philip M. ;
Posner, Jonathan D. ;
Wang, Joseph .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (26) :8164-+
[9]   Experimental observation of flow fields around active Janus spheres [J].
Campbell, Andrew, I ;
Ebbens, Stephen J. ;
Illien, Pierre ;
Golestanian, Ramin .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Gravitaxis in Spherical Janus Swimming Devices [J].
Campbell, Andrew I. ;
Ebbens, Stephen J. .
LANGMUIR, 2013, 29 (46) :14066-14073