Chaotic Control in a Fractional-Order Modified Van Der Pol Oscillator

被引:0
作者
Gao, Xin [1 ]
机构
[1] SW Nationalities Univ, Coll Elect Informat & Engn, Chengdu 610041, Sichuan, Peoples R China
来源
ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3 | 2011年 / 474-476卷
关键词
van der Pol oscillator; fractional order; chaotic control; chaos; INTEGER; SYSTEMS;
D O I
10.4028/www.scientific.net/KEM.474-476.83
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The dynamics of fractional-order systems have attracted increasing attention in recent years. In this paper, we study the chaotic behaviors in a fractional-order modified van der Pot oscillator. We find that chaos exists in the fractional-order modified van der Pot oscillator with order less than 3. In addition, the lowest order we find for chaos to exist in such system is 2.4. Finally, a simple, but effective, linear feedback controller is also designed to stabilize the fractional order chaotic van der Pol oscillator.
引用
收藏
页码:83 / 88
页数:6
相关论文
共 50 条
[21]   Hopf Bifurcations of a Stochastic Fractional-Order Van der Pol System [J].
Liu, Xiaojun ;
Hong, Ling ;
Yang, Lixin .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[22]   Hopf-Type Bifurcation and Synchronization of a Fractional Order Van der Pol Oscillator [J].
Xiao Min ;
Zheng Wei Xing .
PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, :193-198
[23]   Super-harmonic and sub-harmonic simultaneous resonance of fractional-order van der Pol oscillator [J].
Jiang Y. ;
Shen Y.-J. ;
Wen S.-F. .
Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2019, 32 (05) :863-873
[24]   Bifurcation and stability analysis of commensurate fractional-order van der Pol oscillator with time-delayed feedback [J].
Chen, Jufeng ;
Shen, Yongjun ;
Li, Xianghong ;
Yang, Shaopu ;
Wen, Shaofang .
INDIAN JOURNAL OF PHYSICS, 2020, 94 (10) :1615-1624
[25]   Mixed-mode oscillations and extreme events in fractional-order Bonhoeffer-van der Pol oscillator [J].
Wei, Zhouchao ;
Kumarasamy, Suresh ;
Ramasamy, Mohanasubha ;
Rajagopal, Karthikeyan ;
Qian, Youhua .
CHAOS, 2023, 33 (09)
[26]   Complex order van der Pol oscillator [J].
Carla M. A. Pinto ;
J. A. Tenreiro Machado .
Nonlinear Dynamics, 2011, 65 :247-254
[27]   Numerical behavior of the variable-order fractional Van der Pol oscillator [J].
Ramroodi, N. ;
Tehrani, H. Ahsani ;
Skandari, M. H. Noori .
JOURNAL OF COMPUTATIONAL SCIENCE, 2023, 74
[28]   Resonance Oscillation of Third-Order Forced van der Pol System With Fractional-Order Derivative [J].
Nguyen Van Khang ;
Bui Thi Thuy ;
Truong Quoc Chien .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (04)
[29]   Anticontrol of chaos of the fractional order modified van der Pol systems [J].
Ge, Zheng-Ming ;
Zhang, An-Ray .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) :1161-1172
[30]   Analytical solutions of nonlinear system of fractional-order Van der Pol equations [J].
Munjam, Shankar Rao ;
Seshadri, Rajeswari .
NONLINEAR DYNAMICS, 2019, 95 (04) :2837-2854