Direct growth of nanographene films by surface wave plasma chemical vapor deposition and their application in photovoltaic devices

被引:47
作者
Kalita, Golap [1 ]
Kayastha, Madhu Sudan [1 ]
Uchida, Hideo [1 ]
Wakita, Koichi [1 ]
Umeno, Masayoshi [1 ]
机构
[1] Chubu Univ, Dept Elect & Informat Engn, Kasugai, Aichi 4878501, Japan
基金
日本学术振兴会;
关键词
LARGE-AREA SYNTHESIS; GRAPHENE FILMS; TRANSPARENT; GAS;
D O I
10.1039/c2ra01024k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here, we report direct synthesis of nanographene films on silicon (n-Si) and glass (SiO2) substrates by microwave assisted surface wave plasma (MW-SWP) chemical vapor deposition (CVD) and their application in photovoltaic devices. The technique is a metal catalyst free, rapid growth process and the film can be deposited on different substrates; thus simplifying the synthesis process for various device applications. The directly grown graphene film consists of triangular shaped nanographene domains with sizes of 80-100 nm in length. The nanographene domains interconnect to form a continuous film which shows metallic characteristics. A Schottky junction based photovoltaic device is fabricated with directly grown nanographene film on n-Si and a conversion efficiency of 2.1% is achieved. This finding shows that a transparent nanographene film can be deposited on different substrates and can be integrated for various devices.
引用
收藏
页码:3225 / 3230
页数:6
相关论文
共 27 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Graphene-Silicon Schottky Diodes [J].
Chen, Chun-Chung ;
Aykol, Mehmet ;
Chang, Chia-Chi ;
Levi, A. F. J. ;
Cronin, Stephen B. .
NANO LETTERS, 2011, 11 (05) :1863-1867
[4]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[5]   Achieving High Efficiency Silicon-Carbon Nanotube Heterojunction Solar Cells by Acid Doping [J].
Jia, Yi ;
Cao, Anyuan ;
Bai, Xi ;
Li, Zhen ;
Zhang, Luhui ;
Guo, Ning ;
Wei, Jinquan ;
Wang, Kunlin ;
Zhu, Hongwei ;
Wu, Dehai ;
Ajayan, P. M. .
NANO LETTERS, 2011, 11 (05) :1901-1905
[6]   Organic solar cells with solution-processed graphene transparent electrodes [J].
Wu, Junbo ;
Becerril, Hector A. ;
Bao, Zhenan ;
Liu, Zunfeng ;
Chen, Yongsheng ;
Peumans, Peter .
APPLIED PHYSICS LETTERS, 2008, 92 (26)
[7]   Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application [J].
Kalita, Golap ;
Wakita, Koichi ;
Umeno, Masayoshi .
RSC ADVANCES, 2012, 2 (07) :2815-2820
[8]   Graphene constructed carbon thin films as transparent electrodes for solar cell applications [J].
Kalita, Golap ;
Matsushima, Masahiro ;
Uchida, Hideo ;
Wakita, Koichi ;
Umeno, Masayoshi .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (43) :9713-9717
[9]   Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition [J].
Kim, Jaeho ;
Ishihara, Masatou ;
Koga, Yoshinori ;
Tsugawa, Kazuo ;
Hasegawa, Masataka ;
Iijima, Sumio .
APPLIED PHYSICS LETTERS, 2011, 98 (09)
[10]   Large-scale pattern growth of graphene films for stretchable transparent electrodes [J].
Kim, Keun Soo ;
Zhao, Yue ;
Jang, Houk ;
Lee, Sang Yoon ;
Kim, Jong Min ;
Kim, Kwang S. ;
Ahn, Jong-Hyun ;
Kim, Philip ;
Choi, Jae-Young ;
Hong, Byung Hee .
NATURE, 2009, 457 (7230) :706-710