Imaging local electronic corrugations and doped regions in graphene

被引:101
作者
Schultz, Brian J. [2 ]
Patridge, Christopher J. [2 ]
Lee, Vincent [2 ]
Jaye, Cherno [3 ]
Lysaght, Patrick S. [4 ]
Smith, Casey [4 ]
Barnett, Joel [4 ]
Fischer, Daniel A. [3 ]
Prendergast, David [1 ]
Banerjee, Sarbajit [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA
[2] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA
[3] Natl Inst Stand & Technol, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[4] SEMATECH, Front End Proc Div, Austin, TX 78741 USA
基金
美国国家科学基金会;
关键词
X-RAY-ABSORPTION; FINE-STRUCTURE; CARBON NANOTUBES; GRAPHITE; SPECTROSCOPY; FILMS;
D O I
10.1038/ncomms1376
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electronic structure heterogeneities are ubiquitous in two-dimensional graphene and profoundly impact the transport properties of this material. Here we show the mapping of discrete electronic domains within a single graphene sheet using scanning transmission X-ray microscopy in conjunction with ab initio density functional theory calculations. Scanning transmission X-ray microscopy imaging provides a wealth of detail regarding the extent to which the unoccupied levels of graphene are modified by corrugation, doping and adventitious impurities, as a result of synthesis and processing. Local electronic corrugations, visualized as distortions of the pi*cloud, have been imaged alongside inhomogeneously doped regions characterized by distinctive spectral signatures of altered unoccupied density of states. The combination of density functional theory calculations, scanning transmission X-ray microscopy imaging, and in situ near-edge X-ray absorption fine structure spectroscopy experiments also provide resolution of a longstanding debate in the literature regarding the spectral assignments of pre-edge and interlayer states.
引用
收藏
页数:8
相关论文
共 46 条
[1]   X-ray absorption and photoelectron spectroscopy studies on graphite and single-walled carbon nanotubes: Oxygen effect [J].
Abbas, M ;
Wu, ZY ;
Zhong, J ;
Ibrahim, K ;
Fiori, A ;
Orlanducci, S ;
Sessa, V ;
Terranova, ML ;
Davoli, I .
APPLIED PHYSICS LETTERS, 2005, 87 (05)
[2]  
AN J, 2010, DOMAIN GRAIN BOUNDAR
[3]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[4]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[5]  
Bagri A, 2010, NAT CHEM, V2, P581, DOI [10.1038/nchem.686, 10.1038/NCHEM.686]
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds [J].
Chen, JG .
SURFACE SCIENCE REPORTS, 1997, 30 (1-3) :1-152
[8]   Defect formation in graphene nanosheets by acid treatment: an x-ray absorption spectroscopy and density functional theory study [J].
Coleman, V. A. ;
Knut, R. ;
Karis, O. ;
Grennberg, H. ;
Jansson, U. ;
Quinlan, R. ;
Holloway, B. C. ;
Sanyal, B. ;
Eriksson, O. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (06)
[9]   Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy [J].
Dresselhaus, M. S. ;
Jorio, A. ;
Saito, R. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 1, 2010, 1 :89-108
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)