Comparison Between Two-Dimensional and Three-Dimensional Dynamic Stall

被引:2
作者
Kaufmann, K. [1 ]
Gardner, A. D. [1 ]
Costes, M. [2 ]
机构
[1] German Aerosp Ctr DLR, Inst Aerodynam & Flow Technol, Bunsenstr 10, D-37073 Gottingen, Germany
[2] ONERA French Aerosp Lab, DAAP Dept Appl Aerodynam, 8 Rue Vertugadins, F-92190 Meudon, France
来源
NEW RESULTS IN NUMERICAL AND EXPERIMENTAL FLUID MECHANICS X | 2016年 / 132卷
关键词
D O I
10.1007/978-3-319-27279-5_28
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Numerical computations using the DLR-TAU code investigate the differences and similarities between dynamic stall on the two-dimensional OA209 airfoil and the three-dimensional OA209 finite wing. The mean angle of attack in the two-dimensional computations is reduced to match the effective angle of attack at the spanwise position where in the finite wing computations the dynamic stall vortex starts to evolve. Small variations of the mean angle of attack in the two-dimensional numerical simulations show a change from trailing edge separation only to deep dynamic stall. The analysis of the three-dimensional flow field reveals that after the evolution of the dynamic stall vortex the flow field is split into two parts: 1. High spanwise velocities towards the wing's root in the region between the plane of the first occurrence of stall and the wing's root. 2. High spanwise velocities towards the wing's tip in the region between the plane of the first occurrence of stall and wing tip.
引用
收藏
页码:315 / 325
页数:11
相关论文
共 10 条
[1]   COMPUTATION OF OSCILLATING AIRFOIL FLOWS WITH ONE-EQUATION AND 2-EQUATION TURBULENCE MODELS [J].
EKATERINARIS, JA ;
MENTER, FR .
AIAA JOURNAL, 1994, 32 (12) :2359-2365
[2]   Experimental Investigation of Dynamic Stall Performance for the EDI-M109 and EDI-M112 Airfoils [J].
Gardner, A. D. ;
Richter, K. ;
Mai, H. ;
Altmikus, A. R. M. ;
Klein, A. ;
Rohardt, C. -H. .
JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 2013, 58 (01)
[3]  
Kaufmann K., 2014, AM HELICOPTER SOC 70
[4]  
Le Pape A., 2007, 33 EUROPEAN ROTORCRA
[5]  
Lorber P.F., 1993, AIAA 24 FLUID DYN C, DOI [10.2514/6.1993-2972, DOI 10.2514/6.1993-2972]
[6]  
McCroskey W.J., 1972, DYNAMIC STALL AIRFOI, P595
[7]  
Menter F.R., 1993, 23 AIAA FLUID DYN PL, DOI [10.2514/6.1993-2906, DOI 10.2514/6.1993-2906]
[8]   Improved Two-Dimensional Dynamic Stall Prediction with Structured and Hybrid Numerical Methods [J].
Richter, K. ;
Le Pape, A. ;
Knopp, T. ;
Costes, M. ;
Gleize, V. ;
Gardner, A. D. .
JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 2011, 56 (04)
[9]  
Schwamborn D., 2008, 50 INT C AER SCI TEC
[10]   Computational fluid dynamics study of three-dimensional, dynamic stall of various planform shapes [J].
Spentzos, A. ;
Barakos, G. N. ;
Badcock, K. J. ;
Richards, B. E. ;
Coton, F. N. ;
Galbraith, R. A. McD. ;
Berton, E. ;
Favier, D. .
JOURNAL OF AIRCRAFT, 2007, 44 (04) :1118-1128